# inundation Mapping using UAVs: Fixed Wing vs. Multirotor

L. HASHEMI-BENI<sup>1</sup>, D. FOGELMAN<sup>1</sup>, G. THOMPSON<sup>2</sup>, and A.GEBREHIWOT<sup>1</sup>;

North Carolina A&T State University, Greensboro, North Carolina (NC), USA
North Carolina Emergency Management, Raleigh, NC, USA

FIG e-Working Week 2021

06/22/2021



# **OUTLINE**

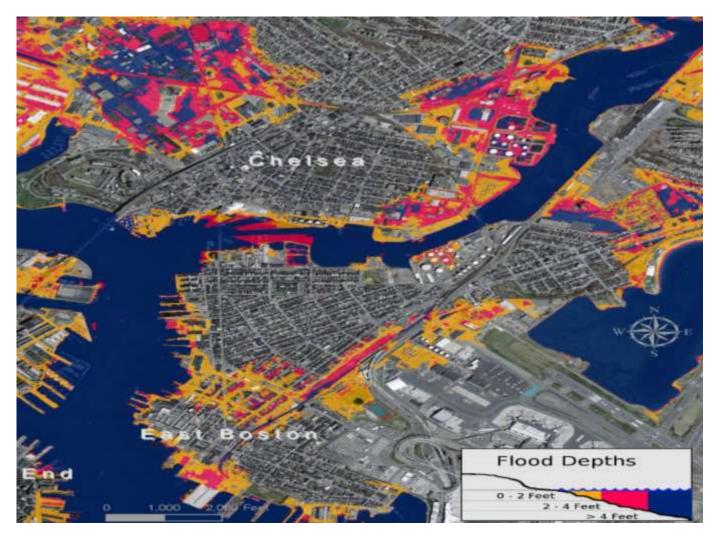
Background

Objectives

Methodology

Results

Conclusions


Flooding: Most common and frequent natural disaster

■ Hurricane Harvey (2017): \$125 billion in damage, 88 deaths in Houston, TX (source: NHC)



# Accurate flood-risk mapping is critical:

- Supporting emergencyresponse planning
- Providing damage assessment
- developing land use plans and regulations



Boston flood map in 3D

## **Unmanned Aerial Vehicles (UAVs)**

It has created a new tool for surveying and geospatial data collection

#### UAVs main advantage:

- Flexibility
- Provide high-resolution images



### Types of UAVs: Fixed wings vs Multirotor

#### **Fixed Wings**:

Advantages: Large area coverage, Long endurance.

**Disadvantages**: large area for landing/take off, Expensive, no hover.

#### Multirotor wings:

**Advantages**: vertical take-off and landing; can hover in a stationary position, ease of use.

**Disadvantages**: short flight time, small payload.



https://www.directindustry.com/industrial-manufacturer/fixed-wing-uav-86134.html



http://www.thedronesmag.com/responsible-flying-with-multirotors/

Background

"To investigate the advantages of using small UAVs, both multirotor and fixed wing for flood mapping"

# **Study Area Data**

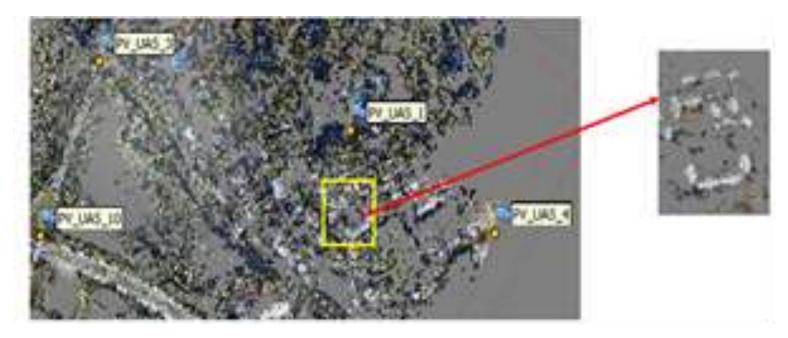
#### **Study** area:

Princeville North Carolina, USA

#### Data:

- High-resolution UAV images acquired by North Carolina Emergency Management
- **Resolution**: up to 3cm

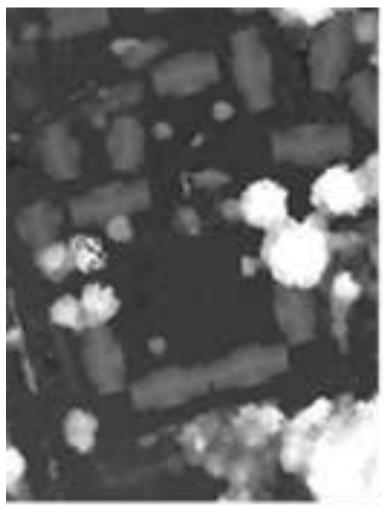





#### **UAV Flood Mapping:**

**Stage 1**: 3D Point cloud generation

**Stage 2**: Georeferencing


**Stage 3**: Creating DSM



3D Point cloud generation and georeferencing

#### **UAV Flood Mapping Results:**





3D flood map

10

- UAV data collection is a quick, low-cost approach to collect high-resolution survey and geospatial data for emergency-response planning, maintaining and designing infrastructure.
- Creating quality flight plans, including sufficient control, and knowing the limitations of this technology before performing a mission is important.
- Surveying of large areas that do not require highly accurate data will be best served by a fixed wing. Smaller sites that need highly accurate, possibly multi-sensor, outputs may result best from a multi-rotor.
- Placing GCPs during flooding events is challenging, the use of RTK UAVs can be implemented.

# Acknowledgment

This research was funded by the National Science Foundation (NSF) (grant number 1800768), and the North Carolina Collaboratory policy



