SMART SURVEYORS FOR LAND AND WATER MANAGEMENT Presented at the FIG & Working Week's and at the FIG & Working Week's at the FIG & Working Week's at the Horner for the Week's a second at the fig and at the fig and a second at the second at the fig and a second at the fig and at the **CHALLENGES IN A NEW REALITY**

Vladimir Zablotskii Paper ID-Number: 10883

Ten-Years Pedagogical Experiment at Moscow University of Geodesy and Cartography: C++ Programming Course Tailored for Surveying Students

Session 02.2 June 22, time 10:45

PLATINUM SPONSORS

Teaching C++ programming

- A C++ programming course tailored for cartographers and surveyors has been developed and implemented in the educational process at the Moscow State University of Geodesy and Cartography
- Pedagogical experiment on the development of the new course has been carried out since 2009. Blended learning combining the advantages of both conventional and remote teaching methods is suitable for a wide range of academic disciplines for example computer science associated with geodesy and cartography.
- The C++ programming course contains a large number of cartographic and geodetic tasks aimed at illustrating various constructions of the programming language.

Teaching C++ programming

- The program is designed to study passing of parameters to the functions by value and with the help of a pointer and a reference. The program computes the reverse true azimuth of heading using several functions.
- Concerning the programming, the significant reasons that disturb the blended learning of students to program in C++ were not revealed. Moreover, in comparison with conventional face-to-face teaching in lecture halls and classrooms, students absorb the knowledge gotten from video lectures fast, and effectively. A similar situation occurs around C++ practicals.

Computing the Reverse True Azimuth

 The straight line A-B is set and the true azimuth of this line at point A is known. It is required to calculate the reverse true azimuth of this line at point B if the convergence of meridians for points A and B is known.

SMART SURVEYORS FOR LAND AND WATER MANAGEMENT CHALLENGES IN A NEW REALITY

01:	#include <iostream></iostream>		17:	<< endl;
02:	using namespace std;		18:	// passing the f
03:			19:	ChangingAzimuth
04:	void NoChangingAzimuthByValue(double, double);		19:	
05:	void ChangingAzimuthByPointer(double *, double);		20:	cout <<"Azimuth
06:	: void ChangingAzimuthByReference(double &, double);		20:	<< trueAzim
07:	int main(void)		21:	// passing the
08:	{		22:	ChangingAzimuth
09:	double trueAzimuth = 44.1; //	/ 44°06′00″	22:	
10:	double convergenceOfMeridian = +1.4; /	/ +01°24′00″	23:	cout <<"Azimuth
11:	double &azimuth = trueAzimuth;		23:	<< trueAzim
12:	cout <<"Initial azimuth value: "<< trueAzimuth << endl;		24:	
13:	cout <<"Reference value: "<< azimuth <<"Reference address: "		25:	return 0;
13:	<< &azimuth << endl;		26:	}
14:	<pre>// passing the first parameter by value</pre>		27:	void NoChanging
15:	NoChangingAzimuthByValue(trueAzimuth,		27:	
15:	conver _£	genceOfMeridian);	28:	{
16:	cout <<"Azimuth after calling NoChangingAzimuthByValue:"		29:	trueAzimuth += 1
16:	<< trueAzimuth << endl;		30:	cout <<"Reverse

17: cout <<"TrueAzimuth variable address:"<< &trueAzimuth

first parameter by address through pointer hByPointer(&trueAzimuth, convergenceOfMeridian); after calling ChangingAzimuthByPointer: " uth << endl; first parameter by address through reference hByReference(azimuth, convergenceOfMeridian); after calling ChangingAzimuthByReference: " uth << endl; AzimuthByValue(double trueAzimuth, double convergenceOfMeridian) 80 + convergenceOfMeridian;

true azimuth in NoChangingAzimuthByValue:"

6

ITC INIVERSITY

- << trueAzimuth << endl; 30: 31: } 32: void ChangingAzimuthByPointer(double * trueAzimuth, 32: double convergenceOfMeridian) 33: { * trueAzimuth += 180 + convergenceOfMeridian; 34: 35: cout <<"Reverse true azimuth in ChangingAzimuthByPointer: " 35: << * trueAzimuth << endl; 36: } 37: void ChangingAzimuthByReference(double & azimuth, 37: double convergenceOfMeridian) 38: { 39: azimuth -= 180 - convergenceOfMeridian;
- 40: cout <<

41: }

PLATINUM SPONSORS

- "Reverse true azimuth in ChangingAzimuthByReference: " 40:
- 40: << azimuth << endl;

ORGANISED BY

Conclusions

- The tailored for geodesy and cartography students process of teaching the C++ programming implemented at the Moscow University of Geodesy and Cartography. One of the developed programs was discussed.
- Modern internet technologies make it possible to bring the educational process to students' homes, not to lock them in classrooms and laboratories.
- However, some courses, such as the Applied Geodesy, would not be taught only distantly. Practicals are to be carried out in a laboratory or on a test site because such work cannot be performed remotely. Blended learning is the best method for teaching applied disciplines as well as C++ programming.

