Rebuilding the cadastral map • of the Netherlands:

the Artificial Intelligence solution

FIG 2021 Online Conference

kada

Presented at the HG

Jeroen Franken (Sioux Technologies), Wim Florijn, Maarten Hoekstra, Eric Hagemans (Kadaster)

Jeroen.Franken@sioux.eu

Approach: from field sketches to updated cadastral map

See also:

Hagemans et al.: Rebuilding the Cadastral Map of the Netherlands, the Overall Concept Van den Heuvel et al.: Rebuilding the Cadastral Map of the Netherlands, the Geodetic Concept

80, 10:56

21/06/2021

Field Sketch Breakdown

5 million sketches

21/06/2021

VeCToR pipeline

Algorithm

Pre-processing

Detection 🥒

Interpretation

Deduction

Positioning and Linking

Human Validation

VeCToR: AI components

Detect (dashed) lines and points

Detect Buildings

Combine two scans

Vind homografie H

Removing JPG artifacts

Localize measurements

27.82

Read handwriting

VeCToR: Detect lines

1. Variants

2. Solution

Multi-label segmentation: predict pixels belonging to class U-NET based on Efficientnet-B5 architecture LSD and RANSAC are used to construct lines out of pixels Performance: pixel-wise F-score of 0.85

	Chica			
	Nieuwe Nummers: V246 2 4772	ja.		456
	- Niet vernummerd : Stoy ang	Com	Vour Bellerbasch	
	Opdracht Nº.	and a second	i mart	5
	a E the astrant 200	1907	with pilon	and hoppe
		S. Lineston	S. G. Browners	
		greens als	1711	14
	AL ANY +	144	Crience and	
	き 二川山花新生 生生 まえ	1233 8 8 8 4	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	and a state
	and the second		the states	July Har
	101 - 101 FT - 1 2-1	an mar wind	800	The state
\leq	and and Dy Bull	11 1	to the second	2.44
	Ditt	1	1 2000	and the second

21/06/2021

GEMEENTE Pullen		D	ienstjaar : 1949
Section Stand Blad	. Ands	higher .	456
Niet vernummerd : 2007 ang - Opdracht N°.	Comer V	enn Betterbesch auszut	112
	ALT STATE	G. Brennver	

VeCToR: Detect objects

1. Object Variants

Measurement

Parcel number

Year, point number, etc

2. Solution

Instance segmentation: Find and classify objects Mask-RCNN algorithm with multiple classes Performance: object-wise F-score of 0.84

21/06/2021

VeCToR: Optical character recognition

1. OCR: Textbox Variants

Measurement

Parcel

Year, point number

2. Solution

Neural Net with CNN / RNN layers and CTC loss Performance: word-level F-score of 0.88

Prediction: 20.55↑

Prediction: 121.28↓

Positioning

1. Find the sketch location on map

Parcel numbers indicate rough location Used data sources: historical borders (HPD) and building map (DKK) Search translations from rough location to data sources

10:56

Positioning

1. Hypothesis: Distance between sketch points ≈ distances between points on target map

Select line segments from sketch, HPD en DKK Find all possible translations [Δx , Δy , ϕ] from location to sources. Cluster the possible translations (Nearest Neighbours) Biggest cluster of translations = optimal translation Performance: Accuracy of 52 – 87%

Conclusion

Al components are used during vectorization, positioning and linking Al components serve to reduce the necessary human labour Due to the usage of Machine Learning, performance increases with more data (during production) Significant reduction in annotation work makes KKN feasible

11

Questions?

Rebuilding the Cadastral Map of The Netherlands

the Artificial Intelligence solution

Jeroen FRANKEN

•

Wim FLORIJN Maarten HOEKSTRA

Eric HAGEMANS

FIG e-Working Week 2021

kadaster