

Hosemen at the fift Working Week 2020, Hosemen at the fift Working Week 2020, How we have a start and the week and the second and a start and the second and **SMART SURVEYORS FOR LAND AND WATER MANAGEMENT**

Arash Jouybari

Department of Computer and Geospatial Sciences, University of Gävle, Gävle, Sweden

Assessment of different GNSS and IMU observation weights on photogrammetry aerial triangulation

Assessment of different GNSS and IMU observation weights on photogrammetry aerial triangulation

Arash JOUYBARI, Mohammad BAGHERBANDI, Faramarz NILFOUROUSHAN

1 BL BLE

Introduction

http://www.imo.org/en/MediaCentre/PressBriefings/Pages/41-SDGS.aspx

Geospatial and Temporal data

1

Introduction [photogrammetry]

Photo = Light Gram = Recording Metry = Measurement

Source: internet

Introduction [LiDAR]

LiDAR stands for Light Detection and Ranging, commonly known as Laser Radar

Aerial LiDAR System Components:

- Aircraft .
- Scanning laser emitter-receiver unit
- Differentially-corrected GPS
- Inertial measurement unit (IMU)
- Computer

Source: internet

Introduction [GNSS]

Global Navigation Satellite System

- Europe's Galileo
- The USA's NAVSTAR Global Positioning System (GPS)
- Russia's Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
- China's BeiDou Navigation Satellite System

GNSS/GPS applications includ

- Tracking/Mapping Devices
- Industrial Machinery
- Sea vessels
- Air Navigation
- Automobiles

Source: internet

Introduction [GNSS/INS integration]

e CNSS Solution True Path Construction True Path Construction Const

Combination of GNSS and INS will give continuous position, time and velocity information, even in difficult environments where there is limited GPS satellites in view

Introduction [Aerial Triangulation Vs. Direct Georeferencing]

Calibrate some parameters:

- ۲ lever arm,
- . boresight misalignment,
- camera interior orientation, .
- some other sensor noise and errors •

GNSS shift and drift errors

https://www.novatel.com/assets/Documents/Papers/D11716.pdf

Introduction [Aerial Triangulation Vs. Direct Georeferencing]

Purpose and Data

Purpose:

To finding best GNSS/IMU weight in aerial triangulation process

Study area and data:

- Gothenburg, Sweden July, 08, 2019
- Lantmäteriet, the Swedish mapping, cadastral and land registration authority
- 0.25 m ground sample distance (GSD)
- The test field size is approximately $75 \times 90 \text{ km}^2$
- 25 strips, 1198 images
- 60% forward overlap 25% lateral overlap
- Applanix POS AV 510 GNSS/IMU Equipment
- Ultracam Eagle digital camera with an 80 mm lens

Test area with scale: 1:503000. Coordinates are in SWEREF99 TM reference system.

Method

GNSS shift and drift errors

- GNSS antenna-eccentricity
- GNSS reference stations are far away from the project area
- Incorrect On The Fly (OTF) integer ambiguities in GNSS kinematic observations

$$\begin{split} f_{x} &= \left(x_{0}' + d_{x_{0}'}\right) - \left(f + d_{f}\right) \times \left[\frac{r_{11}\left(X - X_{0}\right) + r_{21}\left(Y - Y_{0}\right) + r_{31}\left(Z - Z_{0}\right)}{r_{13}\left(X - X_{0}\right) + r_{23}\left(Y - Y_{0}\right) + r_{33}\left(Z - Z_{0}\right)}\right] + \delta_{shift} + \left(t - t_{0}\right)\delta_{drift} \\ f_{y} &= \left(y_{0}' + d_{y_{0}'}\right) - \left(f + d_{f}\right) \times \left[\frac{r_{12}\left(X - X_{0}\right) + r_{22}\left(Y - Y_{0}\right) + r_{32}\left(Z - Z_{0}\right)}{r_{13}\left(X - X_{0}\right) + r_{23}\left(Y - Y_{0}\right) + r_{33}\left(Z - Z_{0}\right)}\right] + \delta_{shift} + \left(t - t_{0}\right)\delta_{drift} , \end{split}$$

Result

Observation uncertainty									
GNSS (meter)	IMU (°)	Numbers of image rejection						RMS Residual	
u(E), u(N), u(H)	u(ω), u(φ), u(<i>κ</i>)	E	N	H	ω	φ	к	Total	check Points (m)
0.2, 0.2, 0.2	0.007, 0.007, 0.009	0	1	0	0	0	0	1	0.157
	0.006, 0.006, 0.008	0	1	0	1	0	0	2	0.158
	0.008, 0.008, 0.002	0	1	0	0	0	537	538	0.151
	0.003, 0.003, 0.007	0	0	0	92	0	3	95	0.168 *
	0.001, 0.001, 0.001	36	33	0	1188	2	748	2007	0.184
	0.001, 0.001, 0.009	1	0	0	1193	1	0	1195	0.192
0.08, 0.08, 0.08		1	6	0	65	0	3	75	0.157
0.04, 0.04, 0.04		0	3	14	60	0	3	80	0.157
0.12, 0.12, 0.12		1	5	0	76	0	3	85	0.16
0.2, 0.2, 0.2		0	0	0	92	0	3	95	0.168 *
0.36, 0.36,0.2		0	0	0	100	0	3	103	0.177
0.36, 0.36, 0.36		0	0	0	102	0	3	105	0.181
0.08, 0.08, 0.08	0.007, 0.007, 0.009	0	7	1	0	0	0	8	0.154

The number of image rejection and checkpoints RMS of some best case, worst case and Lantmäteriet default (*) for observations uncertainties.

T-test evaluation of Images with higher errors

Result

PLATINUM SPONSORS

Thank you for your attention

PLATINUM SPONSORS

RI FI