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SUMMARY  

The detection of surface damage on concrete structures is an important requirement to assess 

the integrity and safety of the structure. This paper develops a machine learning-based model 

for high-precision detection of damage on concrete surfaces using terrestrial laser scanner point 

clouds (PCs). The developed damage detection model relies on a support vector machine 

(SVM) algorithm to train a point-wise defect classifier for locating the concrete damage. It 

employs an unsupervised defect clustering approach to accurately annotate the training data 

without the need for exhaustive manual interventions. The distinctive features used in this 

classifier include local point density and a variety of eigenvalue-based features such as change 

of curvature, eigenentropy, and dimensionality features. The statistical redundancy and 

correlation of features are assessed through a classifier-independent statistical measure. The 

influence of the selected features and the model parameters are investigated. The performance 

of the proposed approach was evaluated extensively on three real datasets: a 12 m long span 

comprising the first five flumes of a concrete aqueduct with over 250 million points as well as 

two civil pedestrian concrete structures with 150 million points and 10 million points, 

respectively. A small part of the aqueduct site with 9000 points on concrete surfaces, balanced 

between points with and without damage, was used for training the system. The use of machine 

learning with a relatively heterogeneous dataset enables the development of a concrete damage 

detection system that can account for limiting conditions of PC processing, e.g., irregular and 

varying point density and optimal neighbourhood size, and enables detection of various types 

of concrete damage. The results obtained from these three datasets demonstrate the validity of 

the proposed supervised model for reliable prediction of the location of damage of any type 

which makes roughness as small as 1 cm or smaller on the surface of concrete structures 

captured with any laser-scanning PC with a minimum spatial resolution of 5 mm. This yields 

an average classification precision and F1-score of 97.33% showing the potential of using 

machine learning for concrete damage detection. 
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1. INTRODUCTION 

Concrete infrastructure is subject to damage and deterioration through years of functioning 

under the influence of natural events and human activities. Early detection of a damaged 

concrete surface allows timely maintenance procedures to counter the side effects that derive 

from them and leads to a longer lifetime for the structure (Mehta and Monteiro, 2006). 

Traditional diagnostic methods of concrete damage assessment are rather time consuming and 

difficult in terms of safety. Remote sensors have offered high spatial resolution and overcome 

the limitations associated with the traditional inspections and provided reliable and efficient 

visual inspections especially for hard-to-reach areas in large structures. Terrestrial laser scanner 

(TLS) technology can cover a full 360°×310° panoramic view in each single acquisition and 

directly generates dense 3D PCs within few minutes with a high precision and resolution 

(Walton et al., 2014).  In the past few years, much research has used TLS PCs for structural 

health monitoring, e.g., Valença et al. (2017) used geometric information captured by TLS to 

compensate for drawbacks of image orthorectification in image processing crack detection 

methods. Hadavandsiri et al. (2019) detected concrete surface damage solely using spatial TLS 

PC coordinates. For furthre review of the traditional concrete inspections and Image-based 

damage detection techniques the readers are referred to Hadavandsiri et al. (2019).  

 

PC processing methods can detect damage on the surface of a structure based on the surface 

roughness and local orientation of points with respect to a reference surface simulating the intact 

condition of the structure (Liu et al., 2011). In this regard, points are classified as either 

damaged or undamaged. Feature descriptors within the local neighbourhood of each point 

provide insight into the structural geometric condition and are thus used to classify the points 

(Dittrich et al., 2017). Although damage assessment based on image classification is an 

extensively researched topic, to the best of the authors’ knowledge, using spatial PCs for 

damage classification is still in its infancy. Most PC damage detection methods rely on 

unsupervised classification schemes which  represent a challenging task due to the following 

limitations: (1) detecting specific shapes of defects occurring on specific geometric surfaces 

such as flat planar structural components (Kim et al., 2014); (2) high dependency on appropriate 

threshold values (Mizoguchi et al., 2013) which are inconsistent and change for different 

datasets captured in different environments; (3) lack of robust statistical methods to suppress 

data artefacts while maintaining information about surface flatness (Chen et al., 2018). In 

addition, the unsupervised classification approaches are not capable to account for all geometric 

features describing the structural geometric condition of PCs captured from concrete surfaces. 

 

In the past few years, machine learning and deep learning techniques, convolutional neural 

networks (CNN) in particular, have significantly outperformed other image classification 

techniques. Nevertheless, there has been considerably less research on adapting the learning 

algorithms for the classification of PCs having a more complex and irregular 3D structure than 
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images. For supervised classification of PCs, schemes based on AdaBoost (Lodha et al., 2007), 

Gaussian Mixture Models (Lalonde et al., 2006), Random Forests (Chehata et al., 2009) or 

Support Vector Machines (SVM; Wurm et al., 2014) have been proposed in the literature. With 

this vision in mind, this paper focuses on developing a new paradigm for supervised damage 

classification solely using the spatial TLS PC coordinates. The developed system is a multi-

label classifier that will predict each point class as damage, planar (non-damage) or outlier. The 

obtained results provide insight to machine learning‐based algorithms for damage detection. 

The proposed methodology for a supervised damage classification approach is explained in the 

following sections. Section 2 introduces the algorithm, followed by a brief explanation of the 

basics necessary for implementing the applied SVM. Section 3 describes the data training.  

Section 4 describes feature selection. The performance of our framework is illustrated by the 

conducted experiments and the respective results in Section 5. Finally, conclusions and open 

problems are presented in Section 6. 

 

2. SUPERVISED CLASSIFICATION 

Supervised classification schemes exploit a training dataset in order to train a classifier that is 

then used to predict the classes of new (unseen) data. The training data is provided by an 

assignment between a feature vector in a d-dimensional feature space and a respective class 

label. The test data only containing feature vectors in the d-dimensional feature space are to be 

classified. This work formulates the detection of damage as an SVM classification problem that 

uses a variety of features to train a classifier for predicting whether a measured point on the 

concrete surface corresponds to damage, non-damage or outlier.  

 

2.1 Feature extraction 

In the proposed algorithm, a variety of geometric features including measured range, incidence 

angle, verticality (Demantké et al., 2012), local point density and a variety of eigenvalue-based 

features derived from the 3D structure tensor was extracted to characterize the local 

neighborhood of each 3D point. The derived features all have different scales and thus each 

feature is normalized to the interval [0, 1]. As illustrated in Hadavandsiri et al. (2019), a 

minimum density of 5 mm point spacing and a fixed neighbourhood range search of 2.5 cm is 

required for detecting small damage of 1 cm. Whereas for slightly rough damage smaller than 

1 cm, a smaller neighbourhood size of 1 cm and density higher than 5 mm point spacing is 

required for more accurate detection. For this reason, the training examples contained various 

points at both 5 mm point spacing and denser. For each single point the features mentioned 

above are then extracted by the spatial relationships to its 2.5 cm and 1 cm neighbors. The local 

point density, represented by the K number of points encapsulated in the fixed range search 

neighbourhood, is used in the SVM model. In this context, a variety of density-representative 

features can be extracted and used as discriminative damage descriptors. This is the fact that 

both outlier and damage points exhibit roughness which can be measured by the residual values 

i.e., distance of the quary point from the plane fitted at its neighbourhood. If the residual 

distance is larger than a thereshold (e.g. the minimum eigenvalue) the point is counted as out-

of-plane; otherwise it is a planar point. The residual distance can be positive or negative 

depending on the direction in which the point is deviated from the plane. The counted number 

of points considered as either planar/out of plane/ negative/ positve, as illustared in Fig 1, is 
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divided by the total number of encapsulated points in each neighbourhood, K, which yields the 

respective density features for each point. 

 
Fig 1. Schematic illustration of point counts representing local point density. 

 

2.2 SVM 

SVM is a kernel-based machine learning method for classification, regression, and other 

learning tasks. The SVM learns a hyperplane or a set of hyperplanes in a feature space to 

linearly separate two classes of data points so that the margin between training points and the 

plane is maximized. Often a linear separation in the feature space is not possible, thus, the so-

called kernel trick is applied. To separate nonlinear classes, first a kernel function implicitly 

maps the data into a higher dimensional feature space. A separating hyperplane is then 

constructed in this feature space where the data is linearly separable. The hyperplane is 

constructed by solving a quadratic problem (Alpaydin, 2014). A parameter commonly denoted 

as C or the soft margin is used to penalize the occasional mislabeled training points and adjust 

the trade-off between maximizing the margin and minimizing the training error. In this work, 

the Gaussian radial basis function (RBF) is used as the kernel function. Since SVM is a binary 

classifier, here, the multi-class classification is solved by combining several binary SVMs as 

provided in the LIBSVM package (Chang and Lin, 2011) and this is done based on a one-

against- one approach. The classification results are strongly affected by hyper-

parameters−parameters that are not directly learned within the estimator−including: (1) the 

parameter C penalizing classification errors; and (2) the parameter 𝛾 representing the length-

scale parameter of RBF kernel. A five-fold cross-validation based on a grid-search in a suitable 

subspace (C, 𝛾) is applied in order to optimally select these hyper-parameters. To do so, the 

training set is divided into two disjoint sets T1 (new training set) and T2 (validation set). 

Subsequently, at each point on the discrete grid, the performance of the classifier is evaluated 

by training on T1 with the current parameter choices and testing on the T2. Resulting from this, 

those values (C, 𝛾) are selected which yield the best performance. Throughout all this work the 

implementation of LibSVM provided by the scikit-learn Python library is used. 

 

2.3 Model evaluation 

The classification model performance will be explained by four model evaluation metrics 

commonly used for classification: (1) precision, (2) recall (3) F1-score which combines 

precision and recall with equal weights, and (4) accuracy. This is expected that feature selection 

and hyper-parameters tuning improve the model evaluation metrics.  
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3. TRAINING DATA FROM UNSUPERVISED DAMAGE CLASSIFICATION 

The unsupervised damage classification proposed in a previous publication of the authors 

(Hadavandsiri et al., 2019) is used to accurately annotate the training data and thus avoid the 

cumbersome work of manually labeling training points. Hadavandsiri et al. (2019) assessed the 

impact of point density, neighbourhood size, damage size and data artefacts on damage 

detection and developed an unsupervised point-wise defect classifier. The classifier was capable 

of locating damage of any type exhibiting roughness as small as 1 cm or smaller on the surface 

of concrete structures captured with any laser-scanning PC with a minimum spatial resolution 

of 5 mm. In their unsupervised method, local surface variation (LSV) or change of curvature, 

which is a highly defect-sensitive feature, is calculated for each point. Although high LSV 

potentially represents surface damage, it can also be the result of outliers present in the laser 

scanning PCs. Therefore, a robust version of principal component analysis (robust PCA) is 

applied to distinguish between actual structural damage and outliers. Afterwards, the derived 

robust LSV feature is examined against a systematically defined threshold to determine whether 

the point should be labelled as damage. Consequently, each 3D point is automatically assigned 

a label indicating whether it is damage or non-damage and query points removed as outliers are 

classified as outliers. The results of unsupervised labelling are manually verified to ensure the 

removal of false-positive labels, and then they are used to train the SVM classifier. This 

classifier can consequently be used to predict the location of damaged points. Unlike the 

unsupervised classifier used for labelling the training data, a more extensive variety of 

descriptive features, extracted from the local neighbourhood of each point, contribute to the 

SVM classification. This supervised approach is also computationally more efficient than the 

unsupervised method based on robust PCA and is, thus, applicable to large PCs. 

 

The first dataset captured from the surface of a concrete heritage aqueduct (Hadavandsiri et al., 

2019) was used to train the model. Since the prediction model mirrors the knowledge used 

during its training, a training dataset sufficiently representative of damaged concrete surfaces 

is the key in the development of an appropriate tool. Hence, the main idea was to select the train 

examples from small pieces of the aqueduct at different surface appearance to increase the 

diversity of the trained dataset and, consequently, of the machine learning system that learns 

from this dataset. This dataset was divided into a training set and a testing set at an 80/20 ratio. 

The unsupervised labelling process, mentioned above, assigned each point one of the three 

semantic labels: damage, non-damage and outlier. At first, the number of selected samples per 

class varied significantly for both training set and test set.  Since an unbalanced distribution of 

training data per class often has a detrimental effect on the SVM model (Criminisi and Shotton, 

2013), we reduce these sets to equal class size so that the sets become balanced between points 

with and without damage as well as outliers. This is done by randomly sampling the same 

number of 3000 training examples encapsulated per class. The respective number of samples 

per class is provided in Table 1. 

 

Table 1. Number of samples per class for the training dataset. 
Class Training set (points) Test set (points) Sum(points) 

damage 2400 600 3000 

non-damage  2400 600 3000 

outlier 2400 600 3000 

sum 7200 1800 9000 
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The system was trained with the extensive variety of features derived from these 9000 points 

selected on the first flume of the south facing side of the western part of the aqueduct as shown 

in Fig 2. The diversity of the training data as well as the variety of the derived features make 

the system learn the impact of irregular point density, optimal neighbourhood size, variety of 

damage size, and outlying points on damage detection. Consequently, the SVM classifier is 

expected to detect surface damage of any type as small as 1 cm or smaller from PCs with a 

minimum spatial resolution of 5 mm. 

    
(a)                                                                    (b) 

Fig 2. (a) The 3000 training examples per class; (b) is the corresponding digital image of the 

rectangle in (a). Throuout this paper, PCs are visualized as damage points in blue, locally-planar 

points in red and outlying points in yellow. Areas of damage were manually delineated on the 

imagery in red for validating the relative position of the corresponding defective areas identified 

from the scans. 

 

4. FEATURE SELECTION 

Whereas a large variety of descriptive features can be exploited and contribute to the 

classification, it has to be considered that the data contains some features that are redundant 

or irrelevant. They have been demonstrated to adversely affect a classifier performance but can 

be removed without incurring much loss of information (Guyon and Elisseeff, 2003). Feature 

selection is the process of selecting a subset of features that are most relevant and informative 

of the predictive modelling problem e.g., the geometric condition of damaged points. Feature 

selection reduces model complexity, reduces misleading data improving the modeling 

performance, reduces overfitting, shortens training times and thus reduces both processing time 

and memory consumption (James et al., 2013). Feature selection in 3D PC processing has rarely 

been applied in the literature (Weinmann et al., 2015). Feature selection strategies can be 

categorized into filter-based methods, wrapper-based methods and embedded methods. Both 

wrapper-based and embedded methods involve a classifier and thus select feature subsets which 

are only optimized with respect to the applied classifier. The selected feature subset should be 

generally applicable for detecting a variety of damage types occurring on any concrete structure. 

For this reason, it should not depend on the use of a specific machine learning classifier 

(Weinmann et al., 2013).  on the other hand, filter-based results exhibit more generality as they 

evaluate intrinsic properties of data. Furthermore, filter methods are much faster as they avoid 
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an exhaustive classifier training and tuning. Thus, we focus on filter-based methods and accept 

that they provide a slightly weaker performance than wrapper and embedded methods. 

 

4.1 Filter-based methods 

Filter-based methods are classifier-independent and apply a statistical measure of features’ 

correlation to assign a scoring to each feature in the training data, which results in a subset of 

the best-ranked features (Weinmann et al., 2015). They are often univariate and consider the 

feature independently i.e., use only feature-class relations for selecting the best-ranked features 

with the highest relevance. Whereas multivariate techniques use both feature-class relations and 

feature-feature relations for selecting features with the minimal redundancy. There is a suite of 

different statistical measures for classification such as the Chi-squared test, the Fisher test, 

information gain and Pearson correlation coefficient scores. We used the analysis of variance 

(ANOVA) statistical test, which is a univariate measure appropriate for classification tasks. It 

takes two arrays, the features and labels, to assess whether a class label is independent of a 

particular feature and returns univariate scores for each feature. A feature subset consisting of 

the best-ranked features are then selected. The influence of the selected features on the 

performance of the classification model is examined in the following section. 

 

4.2 Impact of feature selection 

The features sorted according to their ANOVA relevance rank calculated for the train dataset 

of 9000 points are demonstrated in Fig 3. We examine different feature sets as cases (1) all 

features; (2) all features except intensity and verticality; (3) the meaningful subset of 30 best-

ranked features, i.e., excluding intensity, verticality, range, incidence angle and scanner to plane 

distances; (4) only change of curvature. For all examined cases, the (C, 𝛾) hyper-parameters are 

tuned via cross-validation where training is performed on the feature reduced training set and 

validation is carried out with the feature reduced validation set. The performance of the SVM 

classifier is then evaluated on the respective feature reduced test set. The weighted average F1-

score for different feature subsets is provided in Table 2. The confusion matrices are depicted 

in Tables 3 and 4 where the upper row represents the predicted labels and the left column 

represents the true labels.  

 

A clear trend visible from the feature ranking, quantified in Tables 2 through 4, reveals that the 

intensity and verticality are the least relevant features and the performance of SVM is improved 

by removing them. However, range, incidence angle and scanner to plane distance, which are 

also among the lowest ranked features, can still slightly improve the model performance and 

thus they were kept in the SVM model. The change of curvature is a strong feature to distinguish 

between planar structures and non-planar structures representing damage, which agrees with a 

priori knowledge. However, using more features improves the classification performance, 

therefore, the proposed supervised classifier outperforms the unsupervised defect clustering 

used in the training process which only utilizes the change of curvature. 
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Fig 3.  ANOVA rank of the features derived from the 9000 training points; features extracted 

from 1 cm neighbors are named starting with 1 to be distinguished from features extracted from 

2.5 cm neighbors. 

 

Table 2. weighted average multi-class F1-score in % for different feature subsets. 
 F1-score 

all features 95.80 

all features except intesity and verticality 96.38 

30 best-ranked features  95.10 

change of curvature 86.54 

 

 

Table 3. Confusion matrix: left for all features, right for all features except intensity and 

verticality. 
 damage outlier planar recall   damage outlier planar recall 

damage 596 4 0 0.9933  damage 595 4 1 0.9917 

outlier 10 568 22 0.9467  outlier 4 578 18 0.9633 

planar 11 16 573 0.9550  planar 9 12 579 0.9650 

precision 0.9660 0.9660 0.9630   precision 0.9786 0.9731 0.9682  

 

 

Table 4. Confusion matrix: left for 30 best-ranked features, right for change of curvature. 
 damage outlier planar recall   damage outlier planar recall 

damage 597 3 0 0.9950  damage 592 8 0 0.9867 

outlier 10 556 34 0.9267  outlier 27 437 136 0.7283 

planar 14 28 558 0.9300  planar 6 33 561 0.9350 

precision 0.9614 0.9572 0.9426   precision 0.9472 0.9142 0.8049  
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5. EXPERIMENTAL RESULTS 

Eventually, the SVM model was tuned and trained based on the subset consisting of all features 

except intesity and verticality, as it provides the highest model performance (bolded in Table 

3, right). Afterwards, the model was used to predict the point classes for unseen PCs: the rest 

of the aqueduct, the second data set captured of a concrete pedestrian overpass on the University 

of Calgary campus (Hadavandsiri et al., 2019), and the third data set captured from a concrete 

entrance to a pedestrian underpass. The visual inspection by the corresponding digital imagery 

of the classified scans shown in Figs 4 through 10 suggest the success of the developed SVM 

model for concrete damage detection. As shown in all figures, straight lines along the edges are 

flagged as blue (damage), however they are not damage. Since our damage detection approach 

is based on plane fitting, it causes that the object shape (extended planar structures versus edges) 

has an influence on damage detectability. As a result the edge sections are more probable to be 

detected as damage. The reason that edge areas are erroneously detected as damage is not only 

due to the object shape influence mentioned above, but also the fact that the concrete edges are 

inherently rough due to construction errors. Fortunately, these lines are straight and are thus 

distinguishable from damage.  

 

   
(a) (b) (c) 

Fig 4. Bottom of the first column of the south facing side of the western part of the aqueduct. 

(a) multi-class prediction by SVM; (b) and (c) are the corresponding digital images. 

 

  
(a) (b) 

Fig 5. Middle of the first column of the south facing side of the western part of the aqueduct.  

(a) multi-class prediction by SVM; (b) is the corresponding digital image. 
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(a) 

 
                                        (b) 

Fig 6. South side of the on-campus pedestrian overpass.  (a) multi-class prediction by SVM; (b) 

is the corresponding digital image. 

 

   
(a) (b) (c) 

Fig 7. The civil concrete entrance to a pedestrian underpass. (a) the grey intensity PCs; (b) 

multi-class prediction by SVM; (c) is the corresponding digital image. 

 

In Fig 10, there are many points classified as outliers. This is due to the fact that there are many 

overlapped scans in this part of the aqueuct and although the scans are well registered but still 

there are registration errors which are caught as outliers. 
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Fig 8. Column on north side of the on-campus pedestrian overpass. (a) multi-class prediction 

by SVM; (b) is the corresponding digital image. 

 

 
                                    (a) 

 
                                    (b) 

Fig 9. North side of the on-campus pedestrian overpass.  (a) multi-class prediction by SVM; (b) 

is the corresponding digital image. 

 

 

 

 

 

(a) (b) 
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                                                    (a) 

 
                                                    (b) 

 

 
                                                                   (c) 

Fig 10. Fourth and fifth flumes of the south facing side of the western part of the aqueduct.  (a) 

multi-class prediction by SVM; (b) the outlier point classes in (a) are turned off; (c) is the 

corresponding digital image. 
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The previous unsupervised damage clustering algorithm (Hadavandsiri et al., 2019) needs to be 

repeated with both 1 cm and 2.5 cm neighbourhood sizes to ensure detecting any damage either 

smaller or larger than 1 cm. However, in the proposed SVM damage classification model, 

features derived from both 1 cm or 2.5 cm neighbourhood sizes contribute to predict the class 

labels and thus the model is able to automatically detect any size and type of damage. 

 

6. CONCLUSIONS AND FUTURE WORK 

The implementation of a machine learning-based model for PC damage classification was 

introduced. The analysis carried out on various real-world PCs proved the suitability of SVM 

to train the model with a limited dataset size providing a good solution in terms of both model 

performance and computational efficiency. The model is capable of a point wise detection of 

any damage type as small as 1 cm or smaller on concrete surfaces captured with any laser-

scanning PC at a minimum spatial resolution of 5 mm providing a classification precision close 

to 100%. Selecting only a subset of the most relevant features to PC damage detection is 

profitable in terms of model performance, processing time and memory consumption. The 

fewer features that are used, the less memory and time that is consumed. We avoided the need 

to label training data manually by using an unsupervised clustering that exploits the surface 

curvature for labeling sets of example train points. It was demonstrated that the proposed 

supervised classifier exploiting a variety of features outperforms the unsupervised defect 

clustering that detects damage only based on the surface curvature. Thus, it is concluded that 

machine learning-based models are likely to provide faster and more productive inspections for 

structural damage assessment and health monitoring. For future work, the classification 

accuracy can be further improved by involving contextual classification techniques that exploit 

relationships among point labels in a local neighbourhood of each point. The uncertainty 

associated with the feature measurements is propagated to the classification predictions. 

Therefore, it is desirable to know the probability for a class label. While the decision function 

of SVM does not yield class probabilities, other techniques such as logistic regression is 

suggested to transfer the SVM coefficients toward probabilities in order to yield a damage 

probability map in the future research. 
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