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SUMMARY  

 

Spherical harmonic (SH) is one of the tools used in modelling scalar fields on the spherical 

surface. Employing SH doesn't cause a problem in the matrix calculations of global and regional 

areas. However, the (weighted) normal equations’ matrix of the least squares solution becomes 

ill-conditioned in local areas of several degrees. Apart from the density and distribution of data, 

noise and blunders affect the results of SH modeling. For unique and stable solutions, it is 

recommended to use the smoothed or filtered data. 

 

Empirical Orthogonal Function (EOF) analysis is a statistical tool utilized in the determination 

of spatial and temporal variation in a physical field, the separation of the signal from the noise, 

the prediction and filtering of data. 

 

Tropospheric Zenith Delay (ZTD) time series derived from continuous GNSS stations (CORS) 

depends on the topography of the field (position) and the meteorological parameters. Location-

dependent systematic effects in ZTDs, and especially the effect of station heights, can be 

determined by EOF analysis with high precision. 

 

In this study, hourly ZTD time series are derived at 16 TUSAGA-Active (Turkish CORS) 

stations (at distances of 80-100 km) for 20 days in a test area limited to 30°–34° northern 

latitudes and 39°–42° eastern longitudes. The precision of the least squares SHF modelling and 

the SHF modelling of the results obtained from EOF analysis (the height-dependent systematic 

components (PCs) and the reconstructed data (FRs) from these PCs) are investigated. It is 

shown that ZTDs depend on height. SHF modelling was carried out using 16 stations for every 

hour. SHF modelling was employed to these stations for the arithmetic mean of standard 

deviation of total of 456 models Mavg different radius vectors, PC1 (first Principal Component) 

and FR12 (the constructed data from 12 PC). Whether the ZTDs contain a height-dependent 

systematic component and their effects on the precision of 3D SHF modelling are verified by 

the values of Mavg For unique and stable solutions, the radius of the Earth is taken as r=6375.0 

km+hkm and the arithmetic average of standard deviation is found to be Mavg=±8.5 mm. 
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1. INTRODUCTION 

 

Continuous GNSS networks (CORS) already cover large areas and is rapidly growing. Long-

term Total Zenith Delay (ZTD) time series collected from these networks enables the analysis 

of temporal and spatial variations of ZTDs. 

In recent years, the investigation of height-dependent systematic component of ZTDs (Schüler, 

2001, Steigenberger, 2009, Qian, 2016), the precision of ZTD (Shrestha, 2003, Haase et al., 

2003), and the modelling and interpolation of ZTDs on global, continental or local scales (Zus 

et al., 2019) have become popular. 

CORS stations have been equipped with meteorological sensors and converted to GNSS-MET 

stations to estimate near real-time water vapor. Similarly, these network for water vapor 

prediction can be intensified by interpolating ZTD values to meteorological stations around 

CORS stations.  

Spherical harmonic functions (SHF) are the most natural tools in the modeling of scalar fields 

outside the spherical surface. Therefore, SHF are used for the modelling of physical processes 

such as gravity, electricity and heat transfer (Brett, 1988, Barthelmes and Köhler, 2016) and 

scalar quantities such as temperature, pressure, ZTD and mapping function (Böhm et al., 2007, 

Fritsche et al., 2012, Yao et al., 2015). 

SHF do not cause a problem in the least squares computations for global and continental areas, 

whereas they cause ill-conditioned linear problems in small areas of several degrees. Different 

algorithms have been developed for solving these types of problems. In this context, one of the 

following methods can be selected (Brett, 1988, Hansen, 1994, Yagle, 2005, Meurant, 2010, 

Voss and Lampe, 2011, Xiang and Zou, 2013): singular value decomposition, sensitivity and 

conditioning solution of linear system of equations, regularizations, iterative solution of linear 

systems of equations. 

Empirical Orthogonal Function (EOF) analysis is a vital mathematical and statistical tool for 

the study of spatial and temporal variation in a physical field. This method seeks patterns with 

the largest variance in a spatial-temporal dataset. It is used for analyzing the relationship 

between variables in the dataset and the characteristics of this relation. Due to these features of 

EOF analysis, it has been used in meteorology since the late 1940s. EOF analysis obtains special 

orthogonal patterns or principal components (PC) of an uncorrelated time series in any space-

time meteorological field. In EOF analysis, it is possible to generate a new version of dataset 

by using the largest PCs in the dataset. Due to this feature, it is used for many applications such 

as data compression, data prediction, filtering, and factor analysis. Moreover, it is an important 

tool for separating the signal from the noise in the dataset. 

EOF analysis is a widely used method because of its analytic derivation being simple. However, 

the orthogonality of EOFs in space and time is a debatable issue. There is no orthogonality in 
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physical phenomenon. To overcome this issue, linear transformations of EOFs based on rotation 

is used (rotated empirical orthogonal functions (REOFs)). REOFs enhance the physical 

interpretation of the field (North et al., 1982, Preisendorfer, 1988, Hannachi A., 2004, Hannachi 

et al., 2007, Wilks, 2011). 

 

In this study, a test area is limited 39.0°–42.0° northern latitudes and 30.5°–35.5° eastern 

longitudes comprising of 16 Turkish Continuously Operated Reference Stations (TUSAGA-

Active) spacing of 80 - 100 km. 20 days of hourly ZTD time series derived from these stations 

are evaluated by EOF analysis. It is aimed to investigate whether the ZTDs contain a height-

dependent systematic component, the precision and filtering of ZTDs, to model the filtered and 

the original ZTD time series using SHF and the precision of the modeling. 

 

2. COMPUTATION OF EOFs 

 

A full mathematical derivation of EOFs is given in references (Preisendorfer, 1988, Hannachi 

et al., 2007, Von Storch, and Navarra, 2013). Here, the computation of EOFs using MATLAB 

will be given. 

 

Data matrix M is formed with the dimension of txp where p denotes the number of stations, and 

t is the number of time series. Trends are removed from the dataset: 
 

 detrend(M,0)txpF =  (1) 

 

The covariance matrix of F is formed: 
 

 ( ) /pxpR F F N=   (2) 

 

where N is the number of observations. 

 

The eigenvalues and eigenvectors of the covariance matrix R is computed: 

 
 [ , ] ( )C L eig R=  (3) 

 

where Cpxp is the eigenvector matrix and Lpxp the diagonal eigenvalues matrix. 

 

If EOFs are required to be dimensional, the eigenvector matrix of C is normalized: 
 

 ( )C normc C=  (4) 

 

Hence, EOFs or MODs are computed for each station: 
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The PCs for each station are obtained: 

 
 

1
     i=1,...,p-1

txi iPC F EOF=   (6) 

 

The amount of variance defined by each eigenvalue is computed: 

 
 ( ) / ( )diag L trace L =  (7) 

 

λ values are sorted in decreasing order. λ(i) is paired with the variance of EOFi.  

 

One of the most important characteristic of EOF is to reconstruct the data matrix using PCs. 

The data matrix is reconstructed (FR) by; 
 

 
1 1 1

2 1 2 1 2

*

[  ]*[  ]'

                    

FR PC EOF

FR PC PC EOF EOF

=

=  (8) 

 

and in general by the sum of the modes 

 
 *

txpiFR A E=  (9) 

 

where A= [PC1 PC2 ..] and E=[EOF1 EOF2 ...]. 

 

The statistical significance of the computed EOF can be determined by North’s rule of thumb 

(North et al., 1982). This rule is chosen for its being simple, useful as well as powerful 

(Björnsson and Venegas, 1997). According to this rule, the largest EOF1 is assumed to be 

significant. 

 
 2

 (test value)k k

j k

N
 

  

 

 = −

 
(10) 

 

(11) 

 

EOFs corresponding to the variance percentages (λ) at the lower levels are used in Eqs. 10-11. 

If 
 (hypothesis)k   

, j ; EOF corresponding to the percentage of variance that comes after 

k  and the corresponding PC is found to be significant. Here; N is the degree of freedom, k  

is the first variance. According to the rule, the significance of λ at the lower levels is determined 

gradually depending on significant λ. 
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In the case of reconstruction of the data matrix by Eq. 9, the residual v for every reconstruction 

of the data matrix can be calculated: 
 

 v     i=1,...,p-1i iF FR= −  (12) 

 

where F is the observation matrix and FR is the reconstruction matrix. 

 

Root mean square error (RMSE) is computed from the residuals: 
 

 [v v ]

[vv] / ( )
i

T

i i

o

v v

m N i

=

= −
 

(13) 

(14) 

 

where N is the number of observations. 

 

3. SPHERICAL HARMONICS FUNCTIONS MODELLING 

 

In general, three-dimensional spherical harmonics function outside the spherical surface with 

a curvature radius R is given; 

 
 

 
1

0 0

( , , ) sin( ) .cos( ) .sin( )

n n

nm nm nm

n m

R
f r P A m B m

r
    

+

= =

 
= + 

 
   (15) 

 

where n; degree, m; order, r; radius vector, ; spherical latitude, ; spherical longitude and 

Pnmsin(); Legendre function. If R/r is taken as 1, the equation becomes two dimensional. 

 

The least squares method for modelling the scalar quantities is given; 

 
 1

(sin ).cos( )

n

nm nm

R
a P m

r
 

+

 
=  
 

 

1

(sin ).sin( )

n

nm nm

R
b P m

r
 

+

 
=  
 

 

(16) 

 

(17) 

 

Eq.16 and Eq.17 are expanded to degree n and order m and the coefficients of the design matrix 

A is obtained. 

 
 A=[a00  a10  a11  b11  a20  a21...] (18) 

 

Hence the coefficients of Anm and Bnm are computed by the least squares method: 

 
 

( )
1

T Tx A A A l
−

=  (19) 
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where l is the matrix of observations. 

 

Residuals of the observations is computed: 

 
 

v Ax l= −  (20) 

 

The mean square error of an observation is computed: 

 
  

0

vv
m

n u
= 

−
 (21) 

 

where n; number of observations, u; number of unknowns. The design matrix A is positive 

definite, provided that n>u. However, since the coefficients a and b attain values close to each 

other for smaller areas, the normal equations’ matrix N (ATA) can be ill-conditioned. So 

Generalized Tikhonov Regularization algorithm can be used for solving ill-conditioned linear 

problem as in Eq. 22 in the least squares estimation, (Moszynski, 1995, Gkioulekus, 1996, 

Matlab Central, 2015, Tikhonov regularization, 2015). 

 
 

( )
1

2T T Tx A A B B A l
−

= +  (22) 

 

where λ is the regularization parameter and 

1 0

1 1B

 
 

= −
 
  

 (Yagle, 2005). 

For the optimal solution, m0s are calculated by replacing λ parameter. The graphic of the L-

curve is drawn with log λ and log m0 axes. The λ corresponding to the corner of the curve (the 

point of maximum curvature) will give the optimal solution (Hansen, 1994, Voss and Lampe, 

2011). 

 

4. STUDY AREA AND DATA 

 

ZTD time series derived from 16 TUSAGA-Active stations in a test area limited to 30°–34° 

northern latitudes and 39°–42° eastern longitudes are used in this study. 20 days of hourly ZTD 

values are obtained by processing GNSS observations of these stations between 29 June and 29 

July 2017 using GAMIT/GLOBK software. 

 

4.1 PCS and Precision of EOF Analysis  

 

Systematic PCs of 20 days of hourly ZTD time series are computed by Eqs. 1-7. To test whether 

these PCs are significant, test data is derived by Eq. 10 and 11.  

According to North’s rule of thumb (North et al., 1982), the largest EOF1 is assumed to be 

significant. The significance of other EOFs is examined by utilizing the differences between 

variance percentages (λ) of eigenvalues of consecutive PCs (λi-λi+1). The variance percentages 
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of PCs (λi), the variance percentage differences (λi-λi+1) and the test value Δλ are given in Table 

1. 

Table 1 The results of EOF analysis (Deniz, 2019) 

 

% 

λi 

i=1,...,p-

1 

λi-λi+1 1

2
i

N
  + =  

iom  

(mm) 

(1σ) 

0.7723 0.7723 0.6752 17.2535 

0.0971 0.6752 0.1023 13.0669 

0.0327 0.0644 0.0129 11.3157 

0.0249 0.0078 0.0043 9.7731 

0.0149 0.0100 0.0033 8.7185 

0.0111 0.0038 0.0020 7.8434 

0.0100 0.0011 0.0015 6.9594 

0.0076 0.0024 0.0013 6.2083 

0.0070 0.0006 0.0010 5.4240 

0.0060 0.0010 0.0009 4.6449 

0.0040 0.0020 0.0008 4.0462 

0.0032 0.0007 0.0005 3.4854 

0.0029 0.0004 0.0004 2.9010 

0.0026 0.0003 0.0004 2.2386 

0.0023 0.0003 0.0003 1.4164 

0.0015 0.0008 0.0003 1.4165 

 

Time series can be reconstructed from the computed PCs using Eq. 8 and 9. Thus, FR1=PC1, 

FR2=PC1+PC2, FR3=PC1+PC2+PC3,.... are reconstructed. The mean square error values (
iom ) 

are computed using Eqs. 12-14 by comparing each reconstructed time series to the original time 

series F. These values are given in the 
iom column of Table 1. 

The calculated PCs may not have any physical properties. Therefore, they must be examined. 

Here, the largest component is examined. 

1. day and 1. hour values of FR1 computed from PC1 is visualized in Fig. 1b. When the 

topography of the test network (Fig. 1a) is compared with Fig. 1b, it is observed that FR1 values 

(negative values) also increase in parallel with the increase in height when moving away from 

the shore. 
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Figure 1: (a) Topography of the test network (b) 1. day and 1. hour values of FR1 

 

Fig. 2 shows that there is a high correlation between FR1 values and the height of stations. 

Table 1 shows that PC7 and PC9 are not significant. However, PC8, PC10 and the rest are 

significant. Here, the sum of these significant components FR12 , calculated by Eq. 9, will be 

the filtered original F data. FR12 is the sum of systematic components of F data. The differences 

F- FR12 will give the noise in the F data. Thus, the value of m0 = ± 3.5 mm calculated for FR12 

can be taken as the root mean square error of 1 ZTD observation. 

 

 
 

Figure 2: Height-FR1 diagram 
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4.2 SHF Modeling 

 

In the least squares estimation using Eqs. 15-21, ill-conditioned linear problem occurs because 

the test area is small. Therefore, Generalized Tikhonov Regularization algorithm (GTRA) given 

in Eq. 22 is employed to the data.  

The most optimal regularization parameter λ is chosen with L-curve criteria by the expansion 

of 3rd degree of SHF (n=m=3, 10 unknowns). The graphic of L-curve is shown in Fig. 3. 

 

 
 

Figure 3: The graphic of L-curve 

 

Consequently, the most optimal regularization parameter λ = 1.10-6. 

Whether these unknowns are significant has been tested empirically by adding or removing 

unknowns. In addition, n=m=3 expansion is found to be the optimal expansion for modeling in 

the test area. 

The original matrix F and the reconstructed data FR12 are used in SHF modelling. The 

modelling becomes two dimensional if r is taken as 1, whereas it becomes three dimensional if 

R
r

R h
=

+
. Where R=6375.0 km (Gauss curvature radius for the test network) and h is the 

ellipsoidal height of the stations.  

SHF modelling is employed separately for each hour (total of 480 solutions) and the arithmetic 

average of m0 values is taken. The arithmetic average of precision (m0) is given in Table 2. 

 

Table 2 The arithmetic average of precision 

 

Data 

2D 

r=1.0 

 

m0 (mm) 

3D 

=
+

R
r

R h
 

m0 (mm) 

F (original) 60.60 12.11 

FR12 (filtered) 38.61 8.54 
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It is apparent from Table 2 that 3D SHF modelling yields better results. This result can also be 

interpreted as the evidence of the station height effects in ZTDs. 

The filtered FR12 matrix from 3D SHF modelling have produced the precision of ± 8.54 mm. 

Considering that the test network is 80-100 km apart, this result needs to be evaluated. In denser 

networks, a smaller precision can be expected. 

 

5. CONCLUSIONS AND DISCUSSIONS 

 

EOF analysis can be used for separating the signal and the noise in time series. In this study, 

ZTD time series are filtered by separating the signal and the noise, and reconstructing the series. 

The filtering has increased the precision of SHF modeling. The noise in ZTD time series is 

found to be ± 3.5 mm. It has been proven that ZTD time series in the test area contain height-

dependent systematic component. 

In SHF modeling of ZTD, 3D modelling yields better results than 2D modelling. This result 

also shows that ZTD contain height-dependent systematic component. ZTD time series in the 

test network spacing of 80 - 100 km can be modelled with ± 8.5 mm precision. 

The height-dependent systematic components in ZTDs derived by EOF analysis and SHF 

should be investigated with long-term series in different networks. The scaling of these 

components obtained by EOF analysis should also be examined. 
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