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GNSS Positioning

Standalone Positioning: GNSS receiver autonomous positioning
using broadcast orbits and clocks.
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GNSS Positioning

Differential Positioning: GNSS augmented with data (differential
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corrections or measurements) from a single
reference station or a reference station network.
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Errors are similar for users separated tens,
even hundred of kilometres, and these errors
are removed/mitigated in differential mode,
improving positioning.
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GNSS positioning concept

| To measure ~ Code

To know " distances % measurement
satellite/ - from /

coordinates satellites Carrier

& clock

offset measurement

Position

This picture is from https://gpsfleettrackingexpert.wordpress.com

« GNSS uses technique of “triangulation” to find user location

« To “triangulate” a GNSS receiver needs:
- To know the satellite coordinates and clock synchronism errors:
=» Satellites broadcast orbits parameters and clock offsets.

« To measure distances from satellites:
=» This is done measuring the traveling time of radio signals:
(“"Pseudo-ranges”: Code and Carrier measurements)

=» Measurements must be corrected by several error sources:
Atmospheric propagation, relativity, clock offsets, instrumental delays...
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meters

Ranging signals measurement noise

#
;& Two different types of measurements:

® Code measurements are noisy but
unambiguous (metre level
measurement noise).

Comparison of measurement noise of LC and PC: GUSN, PRN14

52 | - - I [ ] H
Carrier is ambiguous, but precise ny Ca rrler measurgments are precise but
x xR ambiguous, meaning that they have
0 some millimetres of noise, but also have
Carrier || “unknown carrier biases” that could
Cycle-slip |- reach thousands of km.
- —
% . o Carrier biases are estimated in the navigation
o - - filter along with the other parameters
o o | (coordinates, clock offsets, etc.).
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o = Zoom of | unambigtious, Note: Figure shows the noise of code and
s | beitPc x| carrier noise but noisy” * i carrier prefit-residuals, which are the input
y e . data for navigation equations.
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B = p+clock offset = 20.000km

P, is basically the geometric range (p) between
satellite and receiver, plus the relative clock offset.

The range varies in time due to the satellite
motion relative to the receiver.
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Carrier-Smoothed code: Hatch Filter
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GNSS Positioning

Standalone Positioning: GNSS receiver autonomous positioning
using broadcast orbits and clocks.
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@ Errors on the signal

Emission ~300
............. T. Reception -~ Code
A measurement

Satellite clock offset /
. up fo hundreds of km|
/ Relativistic clock correction <13m Ca rrer
Satellite instrumental delay{ ~m ' measurement

...........

........................

................

« To measure distances from satellites:
=» This is done measuring the traveling time of radio signals:
(“Pseudo-ranges”: Code or Carrier smoothed code is used).

=» Measurements must be corrected by several error sources:

Atmospheric propagation, relativity, clock offsets, instrumental delays..

CLY =p +c-(dt,, —dt™ )+ Trop:s + Ilon’" + K, +TGD™ +¢,| 12

ec lrec




Geometric range
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Euclidean distance between satellite coordinates at emission time

and receiver coordinates at reception time.

sat
IO 0,rec

Of course, receiver coordinates are not known

sat 2 sat 2 sat 2
A o xO,rec + y o yO,rec |z o ZO,rec

(is our target).

Linearizing p around an ‘a priori’ receiver position (X,...> Yyec.05 Zrec.0)

Clsat

rec

[modelled] = o(dT* + Arel™ )+ Trop!™ + Ion +TGD™

AZBELS
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Satellite and receiver clock offsets

® They are time-offsets between satellite/receiver time and GPS
system time (provided by the ground control segment):

- The receiver clock offset (dt
coordinates.

) is estimated together with receiver

rec

- Satellite clock offset (d##) may be computed from navigation
message plus a Relativistic clock correction

e’ =a, +a,(t—t,)+a,(t—1t,)" + Arel*™

®

1 [modelled] = p* , Arel )+ Trop™® + Ion" +TGD*™"

dtsat
+ © J.Sanz & J.M. Juan
AZBELS 14




Relativistic clock correction (A, )

e A constant component depending only on nominal value of satellite’s
orbit major semi-axis, being corrected modifying satellite’s clock

oscillator frequency*: , >
Jo=fo _ l(lj +AY 4 464.107

/o 2\c c?

e A periodic component due to orbit eccentricity (to be corrected by user
receiver):

A, =232 osin(E) =25

2
C

\4
= (seconds)

Being 1=3.986005 10** (m®/s?) universal gravity constant, ¢ =299/792458
(m/s) light speed in vacuum, a is orbit’s major semi-axis, e is its eccentricity,
E is satellite’s eccentric anomaly, and rand v are satellite’s geocentric position
and speed in an inertial system.

*being f, = 10.23 MHz, we have Af=4.464 10° f,= 4.57 107 Hz
so satellite should use F0=10.22999999543 MHz.

1 [modelled] = i, —c(d7*" Trop™ + Ion™ + TGD*™

rec




Tropospheric Delay

Troposphere is the atmospheric layer placed between Earth’s surface
and an altitude of about 60km.

The tropospheric delay does not depend on frequency and affects
both the code and carrier phases in the same way. It can be
modeled (about 90%) as:

- d,, corresponds to the vertical delay of the dry atmosphere

(basically oxygen and nitrogen in hydrostatical equilibrium)
=» It can be modeled as an ideal gas.

- d . corresponds to the vertical delay of the wet component
(water vapor) = difficult to model.

A simple model is:

Trop,, =(d,, +

rec

) Wl(elev) ddry =2.36Xp(—0.116-10_3H) meters

wez‘

d,, =0.1m |[H :heightover the sea level|

1.001
/0.002001+sin’ (elev)

m(elev) =

Cl:.[modelled] = p,*, —c (dt_ '+ Arel™ ) + Ion’" +TGD™




@ Ionospheric Delay /on,

The ionosphere extends from about 60 km in height until more than
2000 km, with a sharp electron density maximum at around 350 km.

The ionosphere delays code and advances carrier by the same amount.

The ionospheric delay depends on o, sai_203 1
signal frequency as given by: e

Where 7 is number of electrons per area unit

in the direction of observation, or STEC (S/ant
Total Electron Content) | jsaf N, ds

e For two-frequency receivers, it may be cancelled (99.9%) using
ionosphere-free combination L= f7L2

=

e For one-frequency receivers, it may be corrected (about 60%)
using Klobuchar model (defined in GPS/SPS-SS), whose
parameters are sent in navigation message.

C1 [modelled] = pi, —c(dT™ + Arel™ )+ Trop." + TGD™

LC =




Instrumental Delays

Some sources for these delays are antennas, cables, as well as
several filters used in both satellites and receivers.

They are composed by a delay corresponding to satellite and
other to receiver, depending on frequency:

Ksat :K +TG sat

1,rec 1,rec

2
K, =K +f—12TGDS‘”

2,rec 2,rec
2

e KI1,..may be assumed as zero (including it in receiver clock offset).

o 7GD* is transmitted in satellite’s navigation message (7ota/ Group Delay).

According to ICD GPS-2000, control segment monitors satellite
timing, so TGD cancels out when using free-ionosphere

combination. That is why we have that particular equation for X,.

C1’.[modelled] = p;’,. —c (dt_ 4 Arel™ ) +Trop:s + lon,"
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GNSS Positioning

Differential Positioning: GNSS augmented with data (differential

o
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corrections or measurements) from a single
reference station or a reference station network.
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Errors are similar for users separated tens,
even hundred of kilometres, and these errors
are removed/mitigated in differential mode,
improving positioning.
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Errors on the signal

e Space Segment Errors:
— Clock errors
— Ephemeris errors

e Propagation Errors >

— Ionospheric delay
— Tropospheric delay

e Local Errors

— Multipath >
— Recelver noise

Common

Strong spatial
correlation

Weak spatial
correlation

No spatial
correlation

AZBELS
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80 Session 3.2, Ex4: 02/05/2000: Broadcast - Precise
T T T T T T T T

: ; : ; ; * Orbit 3D error
GO g i@ @@ Clock error

metres

—60
_80 i i ‘ i i i ‘ i
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
time (s)
150 T T
.| =— North error
: : : : : .| — Easterror

error (m)

00

-150

i i i i i i i i
0 10000 20000 30000 40000 50000 0000 70000 80000 90000

Selective Availability (S/A)

was an intentional degradation of
public GPS signals implemented for
US national security reasons.

S/A was turned off at May 2" 2000
(Day-Of-Year 123).

It was permanently removed in
2008, and not included in the next
generations of GPS satellites.

In the 1990s, the S/A motivated the
development of DGPS.

-These systems typically computed
PseudoRange Corrections (PRC) and
Range-Rate Corrections (RRC) every
5-10 seconds.

- With S/A=off the life of the
corrections was increased to more
than one minute.

time (s)
AIBELS
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Session 7a, exercise 2g: bell (PC) Absolute Kinem. Pos. (Broadcast orbits and clocks)
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b U
The determination of the vector between the receivers

APCs (i.e. the baseline “5") is more accurate than the
single receiver solution, because common errors cancel
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Differential GNSS (DGNSS): absolute position

Computed
position

True
position
(known)

T position

T1 More
—i'!' \ I accurate

Reference \ I

receiver User receiver

If the coordinates of the reference receiver are known, thence the reference
receiver can estimate its positioning error, which can be transmitted to the user.
Then, the user can apply these corrections to improve the positioning

Note: Actually the corrections are computed in range domain (i.e. for each
satellite) instead of in the position domain.



In the previous example, the differential error has been cancelled in the
“position” domain (7.e. solution domain approach).
But it requires to use the same satellites in both stations.

Thence, is much better to solve the problem in the “range domain” than in
the “position” domain. That is, to provide corrections for each satellite in view
(i.e. range domain approach):

Broadcast SV 5 ﬁ E@:ﬁg Actual SV

Position ; i Position

*
l g Yo,
G .,
o ‘e
l % Ce,
K .,
g Yo,
l o .
.
.

Calculated ! “p Measured .. P
Range O, ,’ L Pseudoranges

L4
™,
.
.
.
- ‘e
o .
l 0 Yo,
o .,
* Yo,
* ‘e
LA
«

% Differential Message Broadcast R

Reference station PRC, RRC !
(known Location) User

The reference station, with known coordinates , computes range corrections
for each satellite in view. These corrections are broadcasted to the user. The
user applies these corrections to compute its “absolute position”.

© J.Sanz & J.M. Juan
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@ Code Based Differential positioning (DGNSS)

Broadcast SV g@:ﬁ @7 ACtLIaI SV DGNSS With COde ranges
Position I - 2~ Position users within a hundre_d of
~~~~~~~ kilometres can obtain
! S T one-metre-level
I S T positioning accuracy using
Calculated ! < Measured ., user  smoothed-code corrections.

Range O, ,' Pref Pseudoranges
I

% Differential Message Broadcast

Reference station PRC, RRC

(known Location)

— The reference station with known coordinates, computes pseudorange
and range-rate corrections: PRC= p, P, , RRC= APRC/At .

—The user receiver applies the PRC and RRC to correct its own
measurements, P, + (PRC + RRC (t-t,)), removing SIS errors and
improving the positioning accuracy.
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USN3

23.6 km 76 m

GODS
Ref. station

ftp:/ /cddis.gsfc.nasa.gov/highrate/2013/

1130752.3120 -4831349.1180 3994098.9450 gods
1130760.8760 -4831298.6880 3994155.1860 godn
1112162.1400 -4842853.6280 3985496.0840 usn3
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Differential Positioning Performance

Vertical Error (GPS Satandalone): 2013 02 21
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Differential Corrections

FRC (from GODS) : 2013 02 21 Horizontal Error (GPS Satandalone): 2013 02 21
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Standalone (code)

positioning

Standard Point
Positioning (SPP)

W

Few metres.
World wide.
Single epoch.

Code based Differential positioning (DGNSS)

€& Improved AccuraCy =
Broadcast SV g@ﬁg 2 Actual SV
' Q

Position Position

.

.
.,
.
.
X LN
Q

I ’.. .........

I S .
Calculated ! . Measured ., P

Range O, . "rs  Pseudoranges

.
.
.
.
.
- ‘e
I - .
- .O.
0‘ o
Q ...
.
.,

% Differential Message Broadcast /T\

Reference station PRC, RRC
(known Location) User

Picture from http://signus-sas.blogspot.com.es
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Standalone (code)| Code based Differential positioning (DGNSS)

ositionin
P 9 € Improved ACCUracy =
Standard Point Broadcast SV S BE  actalsv

Positioning (SPP) Position FH Position
l ...' S T
] :,0 .........
‘@‘ ‘@‘ Calculated ! . Measured . ,Puser

‘@‘ Range O, " L Pseudoranges

N B e,
\ H Q ‘e
\, . Q .
\ : B e
N, H / IR "
Y, : 4 Of ‘e
N, 1 H ’ & .
\, \ H / o+ LN
N \ H / .,
. ‘\ H /7 b
. v H /
\, \ :

% Differential Message Broadcast /T\

Reference station PRC, RRC
(known Location) User

(x,¥,2)

Errors are similar for users separated tens, even hundred of km, and

User are removed/mitigated in differential mode, improving positioning.
. Session 1.1, Exle: Kinematic. NEU error [SPP] Vertical Error: 2013 02 21 Horizontal Error: 2013 02 21
‘ ‘ ‘ ‘ = ‘th‘ermr w0 ! ! ! ; ; Tusna-Gobs: zakm ! USNA-G00S: 24kn
. East error GODN-GODS: 76m - GODN-GODS: 76m
~— UP error !
°r s Baseline 25 km 1 :

Baseline 76 m

Few metres. Metre level
World wide. Regional Area (~100 km)
Single epoch. Single epoch
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Other DGNSS using smoothed
code but for Safety of Life
applications:

Among the accuracy, the main
target is to provide integrity!!!

130316 Perfornance for upcl [FEpGHS, 0lsec)

« To provide timely alarms in case of
GNSS signal failure.

LRI

- To provide information to usersto . | A .'j’;ve %w\**‘ﬁﬁ
compute the level of trust (such as = |« \*:*}/' Wy ‘J
confidence bounds) that can be ’
applied to the GNSS signals.
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Local Area DGNSS (LADGNSS): GBAS

LADGNSS includes a Master station and several monitor stations. The master
station collects the range measurements of the monitor stations and process
the data to generate the range corrections, which are broadcasted to users.

e In Local Area Augmentation System (LAAS) or the Ground Based
Augmentation System (GBAS), a ground facility computes differential
corrections and integrity data from measurements collected by several

redundant receivers.

GlobalNavigation

This system is designed to N $59 dss
support aircraft operations W““ma ”ﬁ’
during approach and

landing. The differential 4[\

corrections are transmitted ”ﬁ?
on a VHF channel, up to |
about 40km. @ T m;\:\
't Referencef
Metre level accuracies with e station| | .

integrity fulfilling the

stringent requirements of
Civil Aviation are met.
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Horlzontal position error: rovl: 2013 077 [0:86400] seconds
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Wide Area DGNSS (WADGNSS)

To cover a wide-area is more suitable to broadcast corrections for each error
source separately: Satellite clocks, ephemeris and ionosphere.

These corrections are computed by a Central Processing Facility (CPF) from the
range measurements of the monitor stations network with baselines of several
hundreds up to thousand of kilometres.

e Examples using L1 carrier
smoothed code are the Satellite
Based Augmentation Systems
(SBAS), e.g. WAAS, EGNOS, MSASS,
GAGAN ... for Civil Aviation, where
differential corrections and integrity
data fulfilling the Civil aviation
requirements are broadcast over
continental areas by a GEO satellite. |9 Wide Area

Earth .
Station Master Station

Geostationary Satellite GPS Satellites

Metre level accuracies with integrity ——
are met. Reference Stations
Evolution to a dual frequency

(L1,L5) signals in the Aeronautical Radio Navigation Service protected band.

y © J.Sanz & J.M. Juan
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High Accuracy Positioning

Carrier based Differential Positioning techniques:

- Relative GNSS positioning (e.g. RTK, Network-RTK)

=>» At least two operating receivers are needed. It makes use of the
spatial correlation of the errors between stations to remove/mitigate their
effects in differential mode, improving accuracy.

 Precise absolute (point) positioning (e.g. PPP, PPP-AR, Fast-PPP)

=» It uses observation data of a single receiver and additionally state
information on individual GNSS errors (orbits, clocks...) derived from a
GNSS network.

o Wt

‘@‘ ‘@‘ ‘ / e N2
\\\\ ‘ A \ ‘@ : / 0\90\0 >
\\\\ \ % ! A U % e
\\\\\\ ! \\ \‘ 5 ,/ ’\"9 \'Q,é e’d*
~~~~~~~ <5 L/ ot
\{\: ‘\“ : // ( C? é\‘s
(ax,ay,4%) ﬁ\ (x,Y,2)
Referer
e RTK . pPP
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Code based Carrier based Differential positioning

ositionin
P 9 e High ACCUIraCY m——
Standard Point Relative Precise Point
Positioning (SPP) Positioning (RTK) Positioning (PPP)
W | 6 8
yd ¥ . © Y NGl B <t
IS . o &"*
ot (,0((\ &0

(x,y,2)

(x,¥,2)

Reference User
Station

Few metres. Few centimetres. cm — dm level.
World wide. Local Area (few km). World wide.
Single epoch. Few seconds. Best part of one hour.
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Code based
positioning

Standard Point
Positioning (SPP)
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Carrier based Differential positioning
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Code based
positioning

Standard Point
Positioning (SPP)

v

Few metres.
World wide.
Single epoch.

Carrier based Differential positioning

Relative
Positioning (RTK)

Reference
Station

Few centimetres.
Local Area (few km).
Few seconds.

AZBELS

Precise Point
Positioning (PPP)

W)

User

cm — dm level.
World wide.
Best part of one hour.
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Carrier based Differential positioning: RTK

Centimetre level accuracy positioning in real-time based on GPS (or
GNSS) was developed in mid 1990s and nowadays is referred as RTK

PRNT = PRN12 = PRN16
— 2 = & S
— A | < T~

% \ - —~ _\‘_' / PRN1Z  PRN18
Y ‘L — 1; /[ gkl i
> . . L 7/.‘(_.7 e \‘ \ ) [; Y | /
g — - PRN
PR C'_F —\_> ) i /=
P PRNT T r 4
/5 A ¥/
A~ \ G R
. S\ y
Radio Tx. Correction to g
Antenna . adada GPS Receiver

%Picture from

http://water.
USQS.QOVZOS

w/gps/index.
html )

It involves a reference receiver transmitting its raw measurements to a rover receiver

via some sort of communication link (e.g. VHF or UHF radio, cellular phone). The data
processing at the rover receiver includes ambiguity resolution of the differential carrier
data and coordinate estimation of the rover position.

Users within some ten of kilometres can obtain centimetre level positioning.
The baseline is limited by the differential ionospheric error that can
reach up to 10cm, or more, in 10km, depending of the ionospheric activity.

J%BEL%+ Real-Time-Kinematics (RTK) © J.Sanz & J.M. Juan 47
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Code measurements are unambiguous but noisy (metre level noise).

Carrier measurements are precise (few millimetres of noise) but ambiguous
(the unknown biases can reach thousands of km).

Carrier phase biases are estimated in the navigation filter along with
the other parameters (coordinates, clock offsets, etc.). If these biases were
fixed, measurements accurate to the level of few millimetres would be
available for positioning. However, some time is needed to decorrelate such
biases from the other parameters in the filter, and the estimated values are

not fully unbiased.



RTK uses DD measurements to:

« Remove differential errors (cm level short baselines)
* Benefit of the integer nature of DD ambiguities

Carrier ambiguities contains

(real-valued) hardware biases °
B = AN +b, +b* s
But, they cancel in Double v

Differences (DD) between pairs
of satellites and receivers.

Thence the double differenced

carrier ambiguities are integer o

numbers of wavelengths:

UPC1 (ref)

@ Double Differences (DD) and RTK: AMBIG. FIX

PRNOG6 (ref)

W

DDN1 ambiguity: PRN21
T T

Integer

___nhumber |

N —

sat | _ sat _ pysat
AVB rec | B rec B

rec,R

rec,R

- (B =By ) =AAVN:
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RTK assumes that the
ionosphere errors mostly
cancel in differential mode.

2001 DoY 327: S5TEC PRN29 é;;£ D;Y 328:‘5TEC-;éﬁ29
| Then, baseline is in RTK limited by the differential | /& -
®[ " |ionospheric error that can reach up to 10cm, or |  J Fg ¢
»| | more, in 10km, depending of the iono. activity. ]
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IND2-IND3: 18.38m: L1 ambiguities fixed
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The key feature of RTK is the ability to fix the carrier ambiguities On-The-
Flight (OTF), i.e. while on the move. Major receivers manufacturers offer RTK
solution packages consisting on a pair or receivers, a radio link, and software.

The performance of RTK is measured by (i) initialization time, and (ii)

reliability (or, correctness) of the ambiguity fixing. There is an obvious trade-
off between getting the answer quickly and getting it right.

For typical baselines up to 10 km, integer ambiguity resolution in few tens of
seconds is common, achieving centimetre error level of accuracy.

J%BELS+ © J.Sanz & J.M. Juan
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The main drawback of the single base RTK is that the maximum
distance between rover and reference stations cannot exceed 10
to 20 km in order to be able to rapidly and reliably resolve the
carrier ambiguities.

=» Many reference stations are needed to provide service to a larger
region or a whole country (e.g. 30 stations to cover 10.000 km?)
(e.g. Corsica -8.000 km2- or Cyprus islands -9.000 km?2-).

* This limitation comes from the distance-dependent biases such as
differential atmospheric refraction (Ionosphere, Troposphere),
mainly, and orbit error, as well.

These errors, however can be
accurately modelled from the
measurements collected by a
continuously operating reference
stations network, surrounding
the rover receivers.
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@ Vi rtua I Refe rence Sta ti ON  http://water.usgs.gov/osw/gps/real-time_network.html

The basic scenario for VRS surveying is as follows:

The user sends its approximate position
to the Real-Time Network (RTN)
system using a cell phone (or other
communication method).

The RTN system emulates a virtual
reference station, in close proximity to
the user based on the position sent.

=» The RTN system computes and
sends "“virtually shifted measurements”
as if a real base station were
broadcasting from the location of the
virtual reference station.

Image courtesy of Trimble

After initialization, the survey proceeds in exactly the same manner as an
RTK survey. No receiver upgrade is needed (regarding to RTK).

JQBELB-'- © J.Sanz & J.M. Juan
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@ Limitations of Network-RTK include:

« Limitation in the distance between reference stations (over 50-100km),
which depends on the geographic location of the network and
the level of ionospheric activity.

« There is a high cost of setting up and maintaining the RTN:

=» Note: With typical baselines between reference stations of 50-100 km,
about 5 to 10 reference stations are still needed per 10.000 km?
(e.g. Corsica -8.000 km2- or Cyprus islands -9.000 km?2-).

« Use of the RTN is limited by data link coverage and system latencies or
down times.

« Availability is dependent on network extent and accuracy can be affected
by the network density.

« In the case of VRS, it requires a two way communication link. Then, the
number of potential VRS users is limited.
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Code based
positioning

Standard Point
Positioning (SPP)

W

Few metres.
World wide.
Single epoch.

Carrier based Differential positioning

Relative
Positioning (RTK)

Reference
Station

Few centimetres.
Local Area (few km).
Few seconds.

AZBELS

Precise Point
Positioning (PPP)

W)

User

cm — dm level.
World wide.
Best part of one hour.
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Precise (Absolute) Point Positioning: PPP

Zumberge et al. (1997), proposed the Precise Point Positioning (PPP)
method for absolute positioning of a single receiver.

Using precise orbits and clocks (post-processed or Real-time, e.g. from
IGS) and with an accurate measurements modelling, provides
centimetre (static) or decimetre (kinematic) level of accuracy for any
worldwide user with a dual-frequency receiver (iono-free combination).

NEU positioning error [Static PPP] NEU positioning error [Kinem PPP]

0.20 . . . 0.4 T . .
i| = North error : : : : : i = North error
| — East error : : : : : | —— East error
{|_—— UP error ] 03 Co T oy ‘| —— UP error
I T T

151U e N1 O O O YO O O W
5 OO0 i e E 0.0\
"""""""""""""""""""""""""""""""""""""""""""""""""""" 0.1F
" static: Centimetre level | | | Kinematic: Decimetre level |
o1s|| - accuracy over 24h data o3} @CCUracy. or better after. ...
I . i several tens of minutes
020010000 20000 30000 4062%6?2}600 50000 70000 80000 90000 04515606 7063030650 40000 50600 6300070000 8063050000

time (s)

The main disadvantage of PPP is that the solutions take longer to
, converge than the RTK or NRTK differential solutions. 58




lonospheric delay

The ionosphere extends from about 60 km over the Earth surface
until more than 2000 km, with a sharp electron density
maximum at around 350 km. The ionospheric refraction
depends, among other things, of the location, local time and
solar cycle (11 years).

 First order (~99.9%) ionospheric delay é’ion depends 5‘1,0” = 40'23 I
on the inverse of squared frequency: f
where I is the number of electrons per area unit 1=(N4
along ray path (STEC: Slant Total Electron Content). __[ 4
+ Two-frequency receivers can remove this error source = = F
(up to 99.9%) using ionosphere-free combination . . S orem sttt o o)
of pseudoranges (PC) or carriers (LC). oo =412 ‘
(= ionosphere-free combination) -1

» Single-frequency users can remove about a 50% of the
ionospheric delay using the Klobuchar model, whose
parameters are broadcast in the GPS navigation message.

1996 1998 2000 2002 2004 2006

€) gAGEwWPC e

Research group of Astronomy & Geomatics
Technical University of Catalonia

ISAE-SUPAERO (Toulouse) 2014



User:

" & r '
o ! ” f Password:
GDC a '_""/ -J login

GMNSS DATA CENTER
- &
o @

NTRIP > EUREF & IGS products > Orbits

Real-time Satellite Orbit and Clock Corrections to
Broadcast Ephemeris from IGS and EUREF Resources

EUREF's Realtime Analysis project and the IGS Real-time Pilot Project provide access to precise GNSS satellite orbits and clocks via
NTRIP for test and evaluation.

Realtir:e PPP resultls for ZIH28, Honitor Scenario 27 - (C} BKG ».50 Precise Orbits and ClOCkS Can

8.3 Horth IZIIisplat:emsnts,I RHS +:’-B.BI3B n—
East Dis?lacenents, RHS +/-0.836 n ——— - .
oua el siariacens, e oot e pe derived from corrections to

Broadcast Ephemeris.

RTCM's 'State Space
Representation’' (SSR)
Working Group has developed
appropriate v3 messages to
disseminate such Corrections
in real-time.

-g,5 U i i i i i .08

60:08 Bd:e8 65:08 12:88 16:08 28:88
24h S5liding Hindow, last epoch 14-18-28 23:47:12 UTC
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Pros

« PPP provides absolute worldwide positioning for a single receiver, from a
reduced reference stations network (some tens for the whole planet).

« The “state-space” modelling used in PPP, where the different error
components (orbits, clocks...) are treated separately, is more close to the
physical error sources.

« It also allows to reduce the message bandwidth for transmission. Different
time update rates can be used for different state parameters.

Cons:

» The main disadvantage of PPP is the large converge time. Decimetre
level navigation can require from tens of minutes to more than one hour,
depending on the satellite geometry.

« Also it is limited in accuracy, because in the conventional PPP, carrier
ambiguities are estimated as real numbers (floated), i.e. are not
fixed as integer values as in RTK.

Comment: The ionosphere-free ambiguity parameter estimated in the conventional
PPP is a combination of integer ambiguities and the satellite and receiver carrier
hardware biases. Then the integer property is lost.

Note: These biases are canceled in RTK when forming Double-Differences of measurements
between pairs of satellites and receivers.
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@ PPP and floatlng ambiguities

NEU poswtlonlng error [K\nem PPP]

3 — North error

;| —— East error
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is the large converge time. e e R
Decimetre level navigation can  esfifi-
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more than one hour, “oall b
depending on the satellite

geometry.

R ] I I I I ] I I
0"‘10 10000 20000 30000 40000 50000 60000 70000 80000 90000

time (s)

For an observation span relatively long, e.g. one hour, the floated ambiguities
(in PPP) would typically be very close to integers, and the change in the
position solution from the float to the fixed solution should not be large.

As the observation span becomes smaller, ambiguity fixing (e.g. RTK) play a
more important role. But very short observation spans implies the risk of
wrong ambiguity fixing, which can degrade the position solution significantly.
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Brief Conceptual Summary:
DGNSS, RTK, PPP
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Code based Carrier based Differential positioning
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Source

Potential Error size

Error mitigation &

Residual error

Pratap Misra, Per Enge.

Satellite clock | Clock modelling error: 2 m (RMS) DGPS: 0.0m
Ephemeris | Line-Of-Sight error: 2 m (RMS) DGPS: 0.01m
prediction (RMS)

Ionospheric | Vertical delay: ~ 2-10 m Single-freqg. using
Delay (depending upon user location, time of day & Klobuchar: 1-5m.

solar activity)

Obliquity factor: 1 at zenith, 1.8 at 30° , 3 at 59,

DGPS: 0.2m (RMS)

Tropospheric

Vertical delay ~ 2.3-2.5 m at sea level.

Model based on

Performance. Ganga —Jamuna Press, 2004.

Global Positioning System. Signals, Measurements, and

This table is from the book

Delay (lower at a higher altitudes) | average meteorolog.
o _ Conditions: 0.1 -1 m
Obliquity factor: 1 at zenith, 2 at 309, 4 at 15°
and 10 at 5°. DGPS: 0.2m (RMS)
plus altitude effect.
Multipath In clean environment: Uncorrelated
Code:0.5-1m between antennas.
Carrier: 0.5 -1 cm Mitigation trough antenna
design and sitting and
carrier smoothing of code.
Receiver Code : 0.25 - 0.50m (RMS) Uncorrelated
noise Carrier: 1-2 mm (RMS) between receivers
,QBELSF DGPS is based assuming baselines of tens of
km and signal latency of tens of seconds. 70
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DGNSS Commercial services

Commercial WADGNSS services are already operational and in world-wide use
for different applications: agriculture (e.g. OmniSTAR or CenterPoint RTX from
Trimble), operations at sea (e.g. Starfix and Skyfix from Fugro), among others

http://www.fugro.com/  http://www.trimble.com

e OmniSTAR provides four levels of service: | http://www.omnistar.com/
— Virtual base Station (VBS) offering sub-metre positioning,
— World-wide service “XP” delivering better than 20 centimetre accuracy,

— High performance (HP) service delivering greater than10 centimetres
accuracy

— OmniSTAR “G2" service combines GPS plus GLONASS-based corrections to
provide decimetre level positioning.

OmniSTAR services were initially introduced by Fugro company and in
2011 was acquired by Trimble company.

e Similar levels of services are provided by Starfix:| http://www.starfix.com
— Starfix.L1 , Starfix.XP, Starfix.HP , Starfix.G2

J%BEL5+ ® J.Sanz & J.M. Juan 7



http://www.trimble.com/agriculture/CorrectionServices/centerPointRTX-satellite.aspx
http://www.trimble.com/agriculture/CorrectionServices/centerPointRTX-satellite.aspx

@ OmniSTAR VBS
Global Reliable
Sub-Metre Accuracy

p
o -

OmniSTAR VBS is the foundational "sub-metre" level of service. It is an
L1 only, code phase pseudo-range solution.

Pseudo-range correction data from OmniSTAR’s regional reference sites is
broadcast via satellite link to the user receiver.

These data are used, together with atmospheric modeling and knowledge of
the receiver’s location, to generate an internal RTCM SC104 correction
specific to that location. This correction is then applied to the R-T solution.

A typical 24-hour sample of OmniSTAR VBS will show a 2-sigma (95%) of
significantly less than 1 metre horizontal position error and the 3-sigma
(99%) horizontal error will be close to 1 metre.

y © J.Sanz & J.M. Juan
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@ OmniSTAR XP:
15 cm Worldwide
Service

N\ >
A AT

OmniSTAR XP (15cm) is a worldwide dual frequency high accuracy
solution. It is a L1/L2 solution requiring a dual frequency receiver.

Orbit and Clock correction data is used together with atmospheric
corrections derived from the dual frequency data.

By utilizing carrier phase measurement, very high accuracy can be achieved.
OmniSTAR XP service provides short term accuracy of 1-2 inches and long
term repeatability of better than 10 centimetres, 95%CEP.

It is especially suited for Agricultural automatic steering systems. While it is
slightly less accurate than OmniSTAR HP, it is available worldwide and its
accuracy is a significant improvement over regional DGNSS such as WAAS.

)LQBELS.l- © J.Sanz & J.M. Juan 4




COMMUMICATION

OmniSTAR HP 1
10 cm High m
Performance

http://www.omnistar.com/

SubscriptionServices/

OmniSTARHP.aspx o Oumng,, L et W
o °

.—-‘

d

OmniSTAR HP (10cm) service is the most accurate solution available
in the OmniSTAR portfolio of correction solutions. It is a L1/L2 solution

requiring a dual frequency receiver.

OmniSTAR HP corrections are modeled on a network of reference sites
using carrier phase measurement to maximize accuracy.

The expected 2-sigma (95%) accuracy of OmniSTAR HP is 10cm. It is
particularly useful for Agricultural Machine guidance and many surveying
tasks. It operates in real time and without the need for local Base Stations
or telemetry links. OmniSTAR HP is a true advance in the use of GPS for
on-the-go precise positioning.

JQBELS+ © J.Sanz & J.M. Juan "5
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@ OmniSTAR G2
GPS + GLONASS

OmniSTAR G2 is a worldwide dual frequency high-accuracy solution
which uses Orbit and Clock correction data.

OmniSTAR G2 includes GLONASS satellites and GLONASS correction data in
the solution. The addition of GLONASS to the solution significantly increases
the number of satellites available which is useful when faced with
conditions that limit satellite visibility, such as terrain, vegetation or buildings.

OmniSTAR G2 service provides short-term accuracy of 1-2 inches and long
term repeatability of better than 10 cm, 95%CEP. It is especially suited for
operations in areas where trees or buildings may block the view of the sky and
in areas affected by scintillation during times of high sunspot activity.

)LQBELS.l- © J.Sanz & J.M. Juan 6




Observa | Baseline | Broadcast | accuracy Examples of
ble message Products

DGPS Smoothed <100km PRC, RRC ~ metre Single  OmniSTAR

(code) code (L1) epoch VBS
RTK Carrier <10-15km  Carrier ~ Ccm ~30s Several
L1/L2, L1 measurements packages ...
GBAS/ Smoothed < 40 km PRC, RRC ~ metre Single Honeywell
LAAS code (L1) + Integrity epoch GBAS station
VRS Carrier < 50 km Virtual ~30 - Omnistar HP,
L1/L2, L1 Carrier few cm 60s  StarFix HP
measurements
SBAS Smoothed Continental Orbits+ ~ metre Single WAAS,
code (L1) Clocks+ + Integrity epoch EGNOS,
Ionosphere MSAS...
DGNSS PPP Iono-free  Worldwide  Orbits + 1/2h- Omnistar XP,
code and Clocks ~ dm 1h. StarFix XP,
carrier
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