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SUMMARY  
 
Pix4D presents a powerful method to extract per-point semantic class labels from 
photogrammetry data. Labelling this kind of data is important for tasks such as environmental 
modelling, object classification, and scene understanding. Unlike previous point cloud 
classification methods that rely exclusively on geometric features, we show that merging the 
color information from each pixel value with geometry features yields a significant increase 
in accuracy in detecting semantic classes. 
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1. INTRODUCTION 
 

Extraction of semantic information from point clouds enables us to understand a scene, 
classify objects and generate high-level models with CAD-like geometries from them. It can 
also provide a significant improvement to existing algorithms, such as those used to construct 
Digital Terrain Models (DTMs) from Digital Surface Models (DSMs) (Unger et al., 2009). 
With the growing popularity of laser scanners, the availability of drones as surveying tools, 
and the rise of commercial photogrammetry software capable of generating millions of points 
from images, the need for fully automated extraction of semantic information from this kind 
of data increases as well. Although some of the commercial photogrammetry software 
available today offer tools such as automated DTM extraction (Pix4Dmapper, 2017, 
Photoscan, 2017), semantic classification is typically left to specialized software packages 
(eCognition, 2017, GlobalMapper, 2017) that rely on 2.5D orthomosaics and DSMs as an 
input. 
 
The need for semantic modeling of 3D point data has inspired many research and application 
engineers to model specific structures. Often the proposed solutions were handcrafted to the 
application at hand: buildings have been modeled by using common image processing 
techniques such as edge detection (Haala et al., 1998, Brenner, 2000) or by fitting planes to 
point clouds (Rusu et al., 2007) or even building models (Descombe, 2007); road networks 
have been modeled by handcrafted features and DTM algorithms used heuristics about the 
size of objects. While successful and valuable, these approaches are inherently limited since 
they cannot be easily applied to detect new classes of objects. The huge boost in the 
performance of machine learning algorithms over the last years allows for more flexible and 
general learning and classification algorithms. Therefore we focus here on machine learning 
techniques that will allow the users to detect objects categories of their own choice. 
 
In this paper we present a method to classify aerial photogrammetry point clouds. Our 
approach exploits both geometric and color information to assign to individual points class 
labels from the LAS standard: buildings, terrain, high vegetation, roads, human made objects 
(HMO) or cars. We show that incorporating color information yields a significant increase in 
accuracy compared to previous point cloud classification methods that rely exclusively on 
geometric features. 
We evaluate our approach on four challenging datasets and show that off-the-shelf machine 
learning techniques together with our new features result in highly accurate and efficient 
classifiers that generalize well to unseen data. The datasets used for evaluation are publicly 
available at https://pix4d.com/research. Moreover, we show that our classification approach 
can be used to generate accurate Digital Terrain Models, without the need for hand-designed 
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heuristics such as Maximally Stable Extremal Regions (MSER) detection on a Digital Surface 
Model. 
 
2. RELATED WORK 

 
Methods used to extract semantic information from point clouds can be split into two groups: 
those that try to segment coherent objects from a scene, and those that focus on assigning an 
individual class label to each point. Early works using the first approach often converted the 
point data into a regular 2.5D height grid so that standard image processing techniques, e.g., 
edge detection, can be applied (Haala et al., 1998, Haala and Brenner, 1999, Wang and 
Schenk, 2000). A scan line based approach (Sithole and Vosselman, 2003) was proposed for 
structure detection in urban scenes. Building extraction approaches typically use geometric 
primitives during the segmentation step. A multitude of such primitives has been proposed, 
both in 2D, such as planes and polyhedral (Vosselman et al., 2001, Dorninger and Nothegger, 
2007), and in 3D (Lafarge and Mallet, 2012, Xiao and Furukawa, 2014). In (Rusu et al., 2007) 
the authors fit sampled parametric models to the data for object recognition. Similarly, (Oesau 
et al., 2016) investigates supervised machine learning techniques to represent small indoor 
datasets with planar models for object recognition. 
The second type of methods assign a label to each point in the point cloud. Typically this is 
done with supervised machine learning techniques. Binary classification has been explored in 
environmental monitoring to extract road surfaces (Shu et al., 2016), tree species (Böhm et 
al., 2016, Liu and Böhm, 2015), land cover (Zhou et al., 2016), and construction sites (Xu et 
al., 2016). Several other authors employed a multiclass setting to classify multiple types of 
objects and structures (Brodu and Lague, 2012, Weinmann et al., 2015a, Hackel et al., 2016), 
which we adopt in this paper. In particular, we follow the work of (Weinmann et al., 2013), 
which introduced local geometric features that were used to train a Random Forest (RF) 
classifier for single terrestrial LiDAR scans. Their set of features was extended later by 
(Hackel et al., 2016). Examples of other feature sets used in the point classification context 
are Fast Point Feature Histogram (FPFH) (Rusu et al., 2009) or Color Signature of Histogram 
of Orientations (SHOT) (Tombari et al., 2010). All these methods use handcrafted features 
that can be considered suboptimal when compared to more recent deep learning techniques 
(Hu and Yuan, 2016, Qi et al., 2016), which learn features directly on image or point cloud 
data. Those approaches have not been considered here, since they require large computational 
power and large batches of data to train the classifier, and may be restrictive at prediction 
time, depending on the hardware available. 
The ambiguity of the classification task can be minimized by modeling also the spatial 
correlations between the different class labels. Spatial priors are used in (Shapovalov and 
Velizhev, 2011) to classify LiDAR data and in (Niemeyer et al., 2014) the authors apply 
Conditional Random Field (CRF) priors to model different probabilities that neighboring 
labels can have. While those methods show reasonable classification improvements, they are 
computationally expensive and not easy to parallelize. 
In this paper we extend the work on geometric features by (Weinmann et al., 2013, Hackel et 
al., 2016) and show that incorporating color information provides a significant boost in 
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prediction accuracy, while keeping a low computational load at prediction time. In the 
following sections we describe our method and present the results obtained on four 
photogrammetry datasets. 
 

3. METHOD 
 

Our approach combines geometric and color features that are fed to a classifier to predict the 
class of each point in the point cloud. The geometric features are those introduced in (Hackel 
et al., 2016), which are computed at multiple scales to capture details at varying spatial 
resolutions, as explained shortly further. To exploit color information, we compute additional 
color features, based on the color of the respective point and its neighbors.  
 

3.1 Geometric Features 

 

To compute the features for a single scale for a point x, we first obtain its neighboring points 
Sx ={p1, p2, … , pk}. This set is used to compute a local 3D structure covariance tensor 

 
 
where  

 

is the medoid of  Sx.The eigenvalues λ 1≥ λ 2≥ λ 3≥ 0  are unit-sum normalized and the 
corresponding eigenvectors  e1, e2, e3  of Cx are used to compute the local geometry features 
shown in Table 1. 

Sx.The eigenvalues λ 1≥ λ 2≥ λ 3≥ 0  are unit-sum normalized and the corresponding 
eigenvectors  e1, e2, e3  of Cx are used to compute the local geometry features shown in 
Table 1. 
We have slightly changed the geometry feature set from (Hackel et al., 2016) and removed the 
sum of eigenvalues because it is constant since the eigenvalues are normalized to unit sum. In 
addition there are the first and second order moments of the point neighborhood around the 
eigenvectors which help to identify edges and occlusions. Besides the features based on the 
eigenvalues and eigenvectors of Cx, features based on the z coordinate of the point are used to 
increase their discriminative power. 
 
3.2 Multi-scale Pyramid 
 
To incorporate information at different scales we follow the multi-scale approach of (Hackel 
et al., 2016), which has shown to be more computationally efficient than that of (Weinmann et 
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al., 2015b). We successively downsample the original point cloud to create a multi-scale 
pyramid with decreasing point densities. The geometric features described earlier are 
computed at each pyramid level and later concatenated. 
In order to generalize over different point clouds with varying spatial resolution, we need to 
choose a fixed set of pyramid levels. This is particularly important when dealing with data 
with varying Ground Sampling Distance (GSD), which affects the spatial resolution of the 
point cloud. The GSD is a characteristic of the images used to generate the pointcloud. It is 
the distance between two consecutive pixel centers measured in the orthographic projection of 
the images onto the Digital Surface Model (DSM). Among other factors, the GSD depends on 
the altitude from which the aerial photos were taken. With this in mind, we set the starting 
resolution of the pyramid to four times the largest GSD in our datasets, or 4 * 5.1 cm = 20.4 
centimeters. In total we compute 8 scales, with a downsampling factor of 2. With these values 
we were able to capture changes in patterns of surfaces and objects which vary with distance 
(e.g. buildings have significant height variations at the scale of dozens meters, while cars, 
trees do at only a few meters). 
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3.3 Color Features 
 

To increase the discriminative power of the feature set we combine the geometric features 
introduced above with color features. Our color features are computed in the HSV color space 
first introduced by (Smith, 1978), since the analysis of the Pearson product-moment 
correlation coefficient and the Fisher information of our training data showed that we should 
expect higher information gain from the HSV over RGB color space. 

 

Table 1: Our set of geometric (top) and color features (bottom) computed for points in local 
neighborhood Sx . Geometric features are based on eigenvalues of the local structure tensor, 
moments around the corresponding eigenvectors, height differences in Sx . Color features 
include HSV space color of the point of interest and its neighborhood. 
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Besides the HSV color values of the point itself, we compute the average color values of the 
points within a certain radius around the query point  in the original point cloud (i.e. not 
downsampled). We experimented with radii of 0.4 m, 0.6 m and 0.9 m to balance between 
classification speed and accuracy. 
 
3.4 Training and classification 

 
We use Gradient Boosted Trees (GBT) (Friedman et al., 2001) with a leave-one-out 
evaluation methodology: we train on three point clouds and test on the remaining one.. GBT 
can generate conditional probabilities and are applicable to multi-class classification 
problems. They are easily parallelized and are available as reusable software packages in 
different programming languages. To speed up prediction we implement a basic early 
stopping scheme on top of GBT: at prediction time and for each sample, we compute the 
margin of the most-voted class every en evaluated trees. If the margin is larger than a given 
threshold we assume that the classifier is confident enough about this sample, and therefore 
there is no need to evaluate the remaining trees in the ensemble. We will show later that this  
scheme speeds up prediction, improving user experience in interactive applications. 
 

3.5 Implementation Details 
 
We implemented our software in C++ to ease its later integration into the Pix4DMapper 
software. For prototyping and evaluation we used Julia (Bezanson et al., 2014). For fast 
neighbor search we used the header-only nanoflann library 
(https://github.com/jlblancoc/nanoflann) which implements a kd-tree search structure. We 
parallelized training and prediction, reducing computation times significantly. For GBT we 
used Microsoft’s LightGBM (https://github.com/Microsoft/LightGBM). 
 
4. EVALUATION 
 
4.1 Datasets. 
 

Table 2 shows the characteristics of the datasets employed for evaluation. The Paris-rue-
Madame dataset (Serna et al., 2014) does not contain color information and was solely used to 
verify that our geometric features perform as well as those of (Hackel et al., 2016). Our main 
interest is the aerial photogrammetry and the four last datasets of Table 2. The images were 
processed with Pix4Dmapper to obtain their respective dense point clouds that were used as 
the input for our approach. Note that the GSD varies significantly between datasets. A 3D 
visualization is presented in Fig. 3(a). Moreover, each dataset contains different types of 
objects and terrain surfaces as shown in Table 3. For example, while all datasets contain 
roads, cropland only appears in one of them. This table will be useful later to analyze the 
performance of our approach on each dataset. We have made three photogrammetry datasets 
publicly available at https://pix4d.com/research. 
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4.2 Experimental Setup 
 
To evaluate our method we test different combinations of feature sets on photogrammetry 
data. For training we randomly sampled 50k points of each class, resulting in 300k training 
samples. The different feature sets used in our experiments are summarized below: 
– Geometric features G: the geometric features shown in Table 1. We use k = 10 neighbors to 
construct Sx. 
– Geometric features with points color Cp: the geometric features  with HSV color values of 
the respective 3D point. 
– Geometric features with points and neighborhood color CN(r): Cp set extended with averaged 
HSV color values of the neighboring points within the radius r around the respective 3D 
point. 

 

Dataset Acquisition Color # points 
GSD [

cm
pixel ] 

Paris-rue-
Madame 

Laser scan No 20M N/A 

Ankeny Aerial images Yes 9.0M 2.3 

Buildings Aerial images Yes 3.4M 1.8 

Cadastre Aerial images Yes 5.8M 5.1 

Rural Aerial images Yes 15.4M 5.1 

Table 2: Point cloud datasets used for evaluation with their size and characteristics. 

 
Feature Ankeny Buildings Cadastre Rural 

Roads + + + + 

Ground/Grass on flatland + + + + 

Ground/Grass on slopes - - + - 

Dry cropland + - - - 

Table 3: Point cloud dataset content break down. The datasets are heterogeneous and contain 
different objects and types of terrain. 

 
4.3 Classifier Parameters 

 
We used 300 trees, and at each split half of the features were picked at random as possible 
candidates. The maximum tree depth was set to 32, learning rate to 0.2 and the bagging 
fraction to 0.5. These parameters were fixed for all the experiments. 
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4.4 Validation on Laser Scans 

 
In the first experiment we reproduced the results presented on the laser-scan Paris-rue-
Madame dataset (Serna et al., 2014). The training and test data sets are generated the same 
way as in (Weinmann et al., 2015b) and (Hackel et al., 2016) by randomly sampling without 
replacement 1000 points per each class for training, and using the rest of the points for testing. 
We observed that this evaluation procedure typically yields overly optimistic accuracies, 
which are much higher than the expected accuracy on unseen test data. We noticed that such 
evaluation resembles an inpainting problem: given a few known labeled points in the cloud, 
estimate the labels of the rest that lie in-between. This gives a bias to the results and does not 
represent the classifier’s ability to generalize to unseen datasets. To overcome these issues we 
propose to split the data set into two non-overlapping regions, train on one half and test on the 
other. If the Paris-rue-Madame dataset is split this way our overall accuracy is reduced to ∼ 
90%. We believe this is a less biased estimator of the performance on unseen data, and adopt 
this strategy to evaluate performance in the rest of our experiments. It is worth noting that the 
Paris-rue-Madame dataset contains only small quantities of some classes such as vegetation 
and human made objects which were found to be harder to classify correctly by (Hackel et al., 
2016). 
 
4.5 Experiments on Aerial Photogrammetry Data 

 
The results are shown in Table 4. We can see that color information significantly increases the 
accuracy and the neighborhood color features also bring the improvement. However the size 
of the neighborhood for color features from given options does not affect much the accuracy. 
To analyze the results in more details we computed the confusion matrix for the top-3 classes 
that contribute to the misclassification error, as shown in Table 5. We now discuss the result 
of each dataset in detail. 
 

Dataset Set of features 

 G G+Cp G+CN(0.4) G+CN(0.6) G+CN(0.9) 

Ankeny 0.322 0.166 0.172 0.174 0.186 

Building 0.47 0.158 0.153 0.154 0.149 

Cadastre 0.461 0.289 0.277 0.272 0.27 

Rural 0.258 0.069 0.06 0.06 0.06 

Table 4: Classification error (number of misclassified points divided by overall number of 
points, the lower the better) when training on 3 datasets and testing on the remaining one. 
The best results are obtained with both geometric and color features.  

For the Ankeny dataset the classifier performs very well for buildings and roads, as shown in 
Figure 1(b). However it confuses large amounts of ground points as roads. This is not 
surprising since most of such mistakes occur in croplands, which are not present in any other 
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dataset. Finally, although high vegetation appears in the top-3 misclassified classes in Table 5, 
this is mostly due to ambiguities in the ground truth: some small bushes were manually 
labeled as ground, while the classifier predicts them as high vegetation. 
The classifier performs very well on the Building dataset. The highest error is predicting 
buildings as high vegetation or human-made objects. This dataset has the lowest GSD (or 
highest resolution), and facades of the buildings are reconstructed well. This is not the case 
for the other three datasets with higher GSD, where only few facade points are available. We 
hypothesize that the classifier is confused with the facades, finding the vegetation or human-
made object to be the closest match.  
On the Cadastre dataset the classifier predicts vast amounts of ground and vegetation points as 
buildings and human-made objects, leading to a very high error rate. This result is expected 
considering Table 3, as the Cadastre dataset contains hills and non-flat ground surfaces, which 
are not present in any of the other two datasets. Thus, the classifier confuses points in the 
regions of inclined ground with other classes that are closer in feature space to the training 
data (e.g. building roofs present a slope that resembles the properties of the points on a hill). 
Our approach performs very well on the Rural dataset, obtaining the lowest misclassification  
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Figure 1: Qualitative results obtained with our approach on the Ankeny dataset, using the 
other three datasets fortraining. We used neighbor color features within a 0.6-meter radius 
neighborhood and the Gradient Boosted Treesclassifier. Incorporating color information into 
the classifier results improves classification, particularly for the roadsbetween buildings. 
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error among all datasets of 6%. Most of this error is due to vegetation being classified as 
ground, which is partly because of ambiguities in the ground truth: it is hard to disambiguate 
high vegetation from ground near the border of a forest. 
The analyses above highlight the importance of reliable and varied training data, in that it 
should resemble the unseen data on which the classifier will be applied, e.g different 
landscapes, seasons, shapes of buildings, etc. 
 

 
4.5 Qualitative Results 
 
Figure 1 shows a 3D view of the Ankeny dataset and the respective classified point cloud 
obtained when using geometric features only, as well as with our approach. Overall the results 
are very satisfying, especially when one considers the heterogeneity of the different datasets, 
as discussed earlier. 
 
4.5.1 Timings 
 
In Table 6 can be seen the speed up obtained with early stopping. We set en = 20 and vary the 
early stopping threshold et. A threshold of et = 1.5 yields a speed up of 2 to 3.5 times 
compared to not using early stopping, with a very small error increment of 1%. 
 

Phase Ankeny Building Cadastre Rural 

Geom. feature computation 41 14 28 85 

 
Table 5: Confusion matrix for the top-3 misclassified classes. In bold we highlighted the 
misclassification error corresponding to the class with which the true label is confused the 
most. Results obtained for the G + C N (0.6) features, training on two datasets and testing on 
the remaining third one. Percentages are with respect to the total number of points in the 
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Geom. + color feature computation 81 48 35 101 

Train 37 41 35 38 

Predict (full) 180 71 119 292 

Predict (early stop, et = 1.5) 73 23 48 78 

Table 6: Timings for feature computation, classifier training and prediction obtained on a 6-
core Intel i7 3.4 GHz computer. Our whole pipeline runs in less than 3 minutes with any of 
the provided point clouds, being suitable for interactive applications. This table also shows 
the benefit of using early stopping with GBT, making prediction between 2 and 4 times faster. 

 

5. CLASSIFICATION-BASED DTM 

 
In this section we show that our classification approach can be used to generate an accurate 
Digital Terrain Model (DTM). We employ the variational approach of (Unger et al., 2009), 
which minimizes an energy functional based on input Digital Surface Model (DSM) and a 
terrain mask. The goal of this minimization is to smooth and flatten the non-ground areas of 
the DSM, such as buildings, high vegetation, etc. Ground and non-ground areas are indicated 
in a binary terrain mask, which is typically computed using the MSER detector (Matas et al., 
2004) on the DSM. Although effective, MSER-based masks can be easily misled by large flat 
roofs or terrain plateaus, and require heuristics that can be difficult to adjust, such as the 
maximum and minimum MSER region size. On the other hand, a classification-based 
approach such as ours can yield more accurate masks without such heuristics, as shown 
below. Next we describe how we generate the terrain mask from an already-classified point 
cloud, and later compare our results to those obtained with the MSER mask. 

 
5.1 Terrain Mask Generation 
 
We generate the terrain mask in two steps. First, the point cloud is rasterized into an image, 
and later it is filtered to remove classification artifacts. 
Given a classified point cloud, we discretize the underlying terrain into a raster image. The 
resolution of the latter is chosen by the user, according to the desired DTM resolution. For 
each cell we count the number of points falling into it, and which fraction of them belong 
to ground or road surface. If the ratio is greater than 0.5 we set the respective mask cell to 
be ground. 
We noticed that sometimes the classifier predicts small patches of road or ground within a 
roof. We apply the following algorithm to avoid these artifacts from deteriorating the 
DTM: 

1. Generate binary mask as explained above in the rasterization process. 
2. Dilate the mask with a 5x5 structuring element. 
3. Find connected components in the latter. 
4. For each connected component ci 
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– evaluate the fraction of pixels σi on the perimeter of ci that belongs to either building or 
human-made object class. 
– if  σi  > 0.8 and area(ci) < 25 m2 then remove the pixels inside ci from the terrain mask. 

An example of the results of the rasterization and filtering steps is shown in Figure 2. The 
filtering step successfully removes patches of ground within roofs and buildings, yielding a 
more accurate DTM mask. 
 
5.2 Evaluation 
 
We compare the DTMs obtained with our approach and with a MSER-based mask. To 
generate the classification terrain mask we use the models trained in the previous section. The 
results are shown in Figure 3. Although there is no ground truth to perform a quantitative 
evaluation of the results, the height maps shown therein suggest that the classification-based 
approach yields more accurate DTMs, as it is able to detect and remove objects such as cars 
and low vegetation where the MSER technique sometimes fails. This is more evident in the 
top row of Figure 3(b), where some cars and trees were confused as terrain by the MSER 
method. 

 
6. CONCLUSION 

 
In this paper we described an approach for a point-wise semantic labeling of aerial 
photogrammetry point clouds. The core contribution of our work is the use of color features, 
what improves significantly the overall classification results. Our method performs not only 
with high accuracies over the whole range of datasets used in the experiments but also with a 
high computational efficiency, making our approach suitable for interactive applications. 
We also showed that our approach can be used to generate accurate Digital Terrain Models, 
outperforming MSER-based methods and without the need to rely on any additional 

 
Figure 2: DTM mask generation steps. The rasterized mask in (b) contains a few 
imperfections that are easily correctedwith a basic filtering scheme based on connected 
component analysis. The final mask shown in (c) no longer containsholes within the 
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heuristics. The classification method presented in this paper is a part of Pix4Dmapper Pro. 
Earlier we mentioned that access to properly labeled training data that represents aerial 
photogrammetry point clouds is limited. To overcome this issue we will implement an 
incremental training method, where users will be given the possibility to classify their data, 
visualize and correct errors manually. As a next step we plan to offer our users the possibility 
to include their datasets into our training data to improve the classifier quality. As the amount 
of training data increases we will be able not only to provide more accurate results but to also 
train specialized classifiers. For example, we could provide a selection of classifiers for 
indoor and outdoor scenes, for different seasons and scales. 
 

 

 
Figure 3: MSER and classification-based DTM results for the Ankeny and Building datasets. 
Our classification-baseapproach removes cars and low vegetation that the MSER-based 
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