Research and the second and the seco

Surveying the world of tomorrow -From digitalisation to augmented reality

Organised by

Surveying the world of tomorrow - Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Centre of Space Techniques

Division of Space Geodesy

Computation of Continuous Displacement Field from GPS Data -Comparative Study with Several Interpolation Methods

BELHADJ.ATTAOUIA, KAHLOUCHE.SALEM, GHEZALI.BOUALEM, and GOURINE.BACHIR.

Belhadj. Attaouia (Algeria) battaouia@gmail.com

FIG 📑 🌑 🗇

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Problematic

In a geodesic network dedicated to monitoring of Structures

- Observations are discontinuous.
- The deformations studies belongs to the continuous domain

The solution uses *Interpolation tools* :

Estimating the value of a quantity at a site from samples of this magnitude collected at other sites [Bosser, 2012].

Surveying the world of tomorrow – Helsink

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Study Objectives

- Densification of spatial estimation based on observations is important in meteorology and geology, etc. because It's impossible to collect observations at any point (cost, inaccessibility. Etc.)
- So the objectives of this study is using different models for choice the optimal method, build a tool to define to each sample the optimal one derived.

Surveying the world of tomorrow -

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Design of an Interpolation Model

- Choice of the type of interpolation (Simple or Complex)
 - > Estimation of its quality

_		$n \sum_{i=1}^{n} (2(S_i) - 2(S_i))$			$\sigma x = v$	$E[X^2] - E$	$[X]^{2}$	
Γ	Min	Max	Moyenne	Médiane	STD	MAE	RMSE	I
	0	0.2220	0.1110	0.1110	0.1098	0.1087	0.1562	
Ľ	-0.0808	0.1754	0.0104	0	0.0544	0.0148	0.0359	┝
	-0.0830	0.2000	0.0103	0	0.0362	0.0157	0.0376	
	-0.0799	0.2047	0.0110	0	0.0367	0.0149	0.0383	I
	0.0000	0.1047	0.0115	0.0001	0.0370	0.0450	0.0200	I
					n	ı	0.5	

RMSE =
$$\left(\frac{1}{n}\sum_{i=1}^{n} (\tilde{z}(S_i) - z(S_i))^2\right)^{n}$$

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Methodology

- Different formulation of Interpolation methods
- Exact methods to preserve the observed values
- Program with " Scripter Tool of Surfer software "

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Flowchart of Methodology

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Preliminary study

- Z_i =Fn(X_i , Y_i) , four fonction tests
- ✓ $F_1(x, y) = (tanh (9y-9x)+1)/9$
- ✓ $F_2(x, y) = (1.25 + \cos(5.4y))/6(1 + (3x-1)2)$
- ✓ F₃(x, y)=e(-81/16) ((x-0.5)2+ (y-0.5)2)/
- ✓ F₄(x, y)=e (-81/4) ((x-0.5)2+ (y-0.5)2)/3
 [C. CARUSO,& AL, 1998]

Type of comparison	Regular sample	Random sample	Digital sample
Grids of	NEAN	NEAN	NEAN, RBF-S
Difference	TL	KRG, MS	TL
	IDW, MS, RBF- Mlog	TL, RBF-M	MS, RBF-M
LOOV	RBF-S, MS	MS	MS
	RBF-M, TL	TL, NEAN	TL
	KRG, NE AN,	KRG, RBF- Mlog,	NEAN
	RBF- Mlog	RBF-S	
HOV	MS	MS	MS
	π.	TL, NEAN	TL, NEAN
	NEAN	KRG	KRG

Surveying the world of tomorrow – He

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Application on real Area

- Site surrounding the Industrial reservoir at Arzew, Algeria
- Set of 56 GPS observations
 between two campaigns
 (2000-2006).

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Results

LOOCV STATISTICS ERRORS OF DN

	MEAN(m)	PEARSON	RMSE(m)
Natural Neighbor	0,004	0,295	0,023
Triangulation Linear	0,003	0,238	0,024
Kriging	-0,002	0,242	0,026
Radial Basis Function	-0,001	0,101	0,027
Modified Shepard's	-0,005	0,110	0,027
Inverse Distance	-0,003	0,240	0,031

LOOCV STATISTICS ERRORS OF DE

	MEAN(m)	PEARSON	RMSE(m)
Natural Neighbor	0,002	0,250	0,027
Triangulation Linear	0,004	0,065	0,028
Radial Basis Function	0,000	0,015	0,029
Kriging	0,000	0,027	0,029
Inverse Distance	0,000	0,029	0,030
Modified Shepard's	0,001	0,085	0,031

LOOCV STATISTICS ERRORS OF DU

	MEAN(m)	PEARSON	RMSE(m)
Natural Neighbor	-0,009	0,166	0,055
Triangulation Linear	-0,010	0,139	0,056
Inverse Distance	-0,001	0,164	0,059
Kriging	0,003	0,051	0,061
Radial Basis Function	0,002	0,050	0,062
Modified Shepard's	0,011	0,108	0,077

Surveying the world of tomorrow –

Helsinki Finland 29 May - 2 June 2017

From digitalisation to augmented reality

Conclusion

- This study compares the results of interpolated unknown displacement field with different exact methods (all reliable),
- ✓ Natural Neighbor as the best interpolator (minimal RMSE);
- Radial basis function-Multilog or kriging give a bests representation of a continues displacement field (without any restriction geometric),

Thank You

