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SUMMARY  
 

This paper presents a semi-automatic approach to building boundary extraction using airborne lidar 

data. Three steps are proposed and implemented directly on the lidar points rather than on the 

rasters obtained from the lidar data. First, ground points and non-ground points are separated using 

an adaptive morphological filter in order to remove the ground points. Then a fusion of methods 

including Normalized Difference Vegetation Index (NDVI), hierarchical clustering and 

thresholding is employed to further remove unwanted objects such as trees and cars. Finally, the 

boundary polygons are extracted and delineated based on alpha-shape and Douglas-Peucker 

algorithms. The extracted polygons are assessed in terms of 11 indices categorized in three 

evaluation methods. The test results show that the proposed method can accurately extract urban 

residential buildings from airborne lidar data.  
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1. INTRODUCTION 

 

Urban areas are of increasing importance in most countries since they have been changing rapidly 

over time. Buildings are the main objects of interest in these areas, and building boundaries are one 

of the key factors for urban mapping and city modelling (Potsiou 2010). Hence, accurate building 

boundary extraction has been a prevalent topic of many research efforts (Forlani, Nardinocchi et al. 

2006, Sohn and Dowman 2007, Dong, Kyoung et al. 2008, Huang and Zhang 2011). However, 

building boundary extraction from airborne lidar data is challenging due to the complexity of 

building shapes and the irregular distribution of lidar data points. Also, lidar data provides less 

accurate information about building edges compared to its vertical accuracy (Awrangjeb, 

Ravanbakhsh et al. 2010). Hence the extracted boundaries tend to be uneven and irregular, even if 

building points are accurately classified (Akkiraju, Edelsbrunner et al. 1995, Wei, Jin et al. 2011). 

In order to obtain more reliable boundaries, we need to regularize the extracted edge lines (Sampath 

and Shan 2007, Tan and Wang 2011). Although there are plenty of algorithms to resolve the 

aforementioned problems, any single method cannot deal with all situations at once whilst each 

algorithm can perform well under a certain condition and with a particular requirement. The 

existing approaches to building extraction using lidar data usually include three steps: ground 

filtering, separation of features, and extraction of building boundaries (Dash, Steinle et al. 2004, 

Keqi, Jianhua et al. 2006, Sohn and Dowman 2007, Awrangjeb, Ravanbakhsh et al. 2010, 

Awrangjeb, Zhang et al. 2013); while some researchers merged the filtering and separation steps 

into one as segmentation or classification (Miliaresis and Kokkas 2007). Though there are different 

methods to extract the building boundaries, the criteria to differentiate buildings from other features 

are based on the same physical characteristics, such as elevation, steepness, and homogeneity 

(Meng, Currit et al. 2010).    

  

In this paper, we attempt to apply suitable methods to airborne lidar data and to assess the quality 

based on three evaluation methods. We propose a semi-automatic approach to building boundary 

extraction from lidar data. The entire approach is solely point-based processing. That is, image 

processing based on rasters will not be used. Our concern is to preserve the shapes as much as 

possible since rasterisation may result in a significant amount of loss of details due to the 

inappropriate choices of cell sizes and interpolation methods. The trade-off is that point-based 

methods are difficult to achieve acceptable running speeds. The proposed approach includes three 

steps: ground filtering, vegetation removal and boundary polygon delineation. First, an adaptive 

morphological filter is developed and performed on the raw lidar point cloud data to separate 

ground and non-ground points. Then points of vegetation and small non-building features are 

removed using a fusion of Normalised Difference Vegetation Index (NDVI), hierarchical clustering, 

and thresholding. Finally the boundary polygons are obtained from the classified building points 

using a combined boundary extraction method. Evaluation of our results is carried out based on 
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both visual examination and statistical analysis. A reference of building polygons digitized from an 

ortho-image is used in the evaluation. A t-test is used to compare the difference between the 

reference and our results and to obtain the statistics of the test results. 
 

2. SEPARATION OF GROUND AND NON-GROUND 

 
2.1 Filtering Methods and Inspirations 

 
The most fundamental challenge in lidar applications is the separation of ground points and those 

falling onto objects. The separation approaches can be categorised as either grid-based filtering or 

point-based filtering (Mahmoud and Trinder 2010). Many research efforts have been made to grid-

based filtering. Grid-based filters usually convert lidar points into regular grids, which is known as 

rasterisation, and then apply image processing algorithms. For example, Kilian et al. (1996) utilized 

a filtering method based on mathematical morphology, which identifies objects in a greyscale image 

by applying morphological operations such as opening and closing. In case of point-based filtering, 

some researchers used Triangular Irregular Networks (TIN) to represent the ground surface in lidar 

points. Axelsson (1999,  2000) developed an adaptive filtering algorithm based on TIN, which can 

manage surfaces with discontinuities in urban areas. However, only a few filters directly work on 

lidar points. Since it is unrealistic to process a huge amount of lidar points at once, it is reasonable 

to use small tiles or windows to scan over the whole data. Therefore, we adapted the morphological 

filter of Kilian et al.’s (J. Kilian 1996) for point-based processing. That is, a programme is 

developed to work directly on points rather than images resulted from rasterisation.  

 

The determination of the window size is still a critical issue to this method, since a large window 

size results in an increased omission error by removing too many non-ground points while a small 

window size leads to a significant commission error by identifying non-ground points as ground 

ones. One way to deal with this problem is to use different window sizes and assign different 

weights to the results. For example, Zhang et al. (2003) proposed a progressive morphological filter 

that repeats the process several times with gradually increased window sizes. However, the choice 

of the assigned weights can still be an issue. In our study, we added an adaptive function that can 

automatically detect a size of the above-ground features and then change window size accordingly. 

Thus, the effect of inappropriate selection of parameters can be minimized. 
 

2.2 Adaptive Morphological Filter  

 
The basic concept of our algorithm is based on the theory of mathematical morphology. In our 

algorithm, the whole point dataset is assumed to be initially scanned by a small line-like 

window m ∗ n. The intention of using small windows is to preserve as much detail as possible in 

slope areas. And then the window size is changed adaptively during the course of data processing. 

The window will move forward gradually to scan over the whole area, and the process will repeat 

along four directions i.e. left to right, right to left, top to bottom and bottom to top. Then an 

intersection of results from all processes is obtained. The reason for the four-direction processes is 

to avoid errors created by complex building structures. Figure 1 illustrates an example of complex 

building structures which will result in misclassification with single direction scanning. Since the 

proposed adaptive filter attempts to find elevation rise and drop to detect the length of a building, it 
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leads to such kind of errors when the scanning window hits multi-rooftop buildings. Sometimes 

high vegetation and low buildings can also create similar circumstances. Such errors can be 

significantly reduced by using the four-direction processes. 

 
Figure 1. An illustration of errors resulting from complex building structure 

 

During the process, for each window wd , the points with the lowest and highest elevation values 

are firstly detected. Every point in wd  that falls within a threshold ht above the lowest point is 

classified as a ground point. Then the window moves a small distance along the scanning direction 

and repeats the process until the whole dataset is scanned. The adaptive window-size indicator flags 

when there is a height difference larger than a threshold within the window. The hypothesis of this 

adaptive method is that a set of points on and around a building can contain a significant elevation 

rise or drop. Thus an approximate size of the building can be detected by measuring where the 

elevation increases or decreases, and the window size can be changed accordingly. The adaptive 

window-size indicator is implemented by the following operations: The height difference Hd within 

wd  is first calculated. If Hd is larger than a predefined threshold hb, the algorithm will consider that 

there are parts of buildings within the window and then check the elevation of the points that fall 

ahead of wd . This checking process uses a smaller checking window wf (Im ∗ n) which is ahead 

of wd to detect elevation change (Figure 2). The process will stop until there is a large elevation 

decrease or the supposed building is larger than a predefined maximum building length. The 

scanning window size will consequently increase to cover the detected building or stay still 

according to the previous results. The elevation change during the detection of a building size is 

expressed as, 
𝛥𝑓 = 𝑒𝑤𝑓−1

− 𝑒𝑤𝑓
  for f=1,2,3…    (1) 

When Δf ≥ hb  it is considered that the window reached the other edge of the building and the 

window size will increase to m + f ∗ Im  in order to cover the whole building. On the other hand, 

if Im > max (Lb), the process will be forced to stop and the default window size will be used, where 

max (Lb) is the predefined largest length of a building in the study area. After the increased window 
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scans over the building, the window size will be set to the default value and repeat the adjusted 

window-based detection (Figure 3). When the ground points are filtered, all the points of 0.3 m 

higher than ground are classified as above-ground features, where 0.3 m is the vertical accuracy of 

the data used in this study. 

 
Figure 2. An illustration of scanning windows 
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Figure 3. Flow chart of the scanning process 

 

3. Vegetation Removal 

 
In urban areas, vegetation is usually the main feature besides buildings. Other features may include 

bridges, cars, towers and small artificial structures. It is important to remove those unwanted objects 

after ground filtering. Normalized Difference Vegetation Index (NDVI) is commonly used to detect 

healthy vegetation and thus to remove it (Aytekin, Ulusoy et al. 2009, Awrangjeb, Ravanbakhsh et 

al. 2010). However, the availability of multispectral images and seasonal changes of trees limit the 

usage of this method. In addition, NDVI may not achieve a reliable accuracy if the choice of 

thresholds is inappropriate. Thus, residuals often remain after the process of the NDVI method.  

 

We used a progressive approach after applying NDVI to remove the residuals as well as other 

unwanted small features. The hypothesis is that these unwanted measurements usually tend to be 

scattered and cannot form a large and regular cluster of points representing a building. Then the 

hierarchical clustering based on Euclidean-Distance is performed to the points. The three-

dimensional distances between points rather than two-dimensional are calculated for clustering. 

Then a progressive approach including height-, areas- and number-of-points-based thresholding was 

applied step by step to remove the clusters that do not contain building points. Firstly, clusters of 
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average above-ground elevation lower than 2 m, and also small clusters that have less than 20 

points i.e. isolated points, lower sparse vegetation points, were removed. Then the alpha-shape 

algorithm was applied on each cluster, and corresponding boundary polygons of the clusters are 

obtained. The main purpose of this step is to remove those features that are small but contain a 

decent amount of points, such as cars, small shed or stairs. Therefore, a minimum area threshold is 

used. The threshold may vary depending on the local condition. For example, area-threshold should 

be larger in a metropolitan area which consists of relatively larger buildings than that in a residential 

area which mainly consists of relatively smaller buildings. Consequently, a threshold of 30 square 

meters is assigned for our study areas.   

 

4. Building Boundary Extraction 

 

There are several algorithms for extraction of polygons from points (Sampath and Shan 2007, Wei, 

Jin et al. 2011, Lee and Kim 2012). In this study, the alpha-shape algorithm is applied on the 

classified building point clusters to detect the points that lie on the boundary. The topology 

information of these points will be preserved; i.e. adjacent points in the point cloud are also stored 

in a certain order in the output matrix (Figure 4). The α value used in this study is 1.5 m, which is 

between the average point spacing and twice the point spacing of the point data. 
  

 
Figure 4. Relationship between the output matrix and the point cloud 

 

Various algorithms exist to delineate zigzag boundaries or curves. The Douglas–Peucker algorithm is one of 

the most well-known algorithms. In the classical Douglas–Peucker algorithm, essential vertices are preserved 

and intermediate points are removed. As a result, simplified lines can be formed with the preserved vertices. 

However, the original algorithm is designed for simplification of lines or paths and thus may not be suitable 

for simplification of polygons. In the case of simplification of lines, the algorithm tends to keep the starting 

and ending points as essential vertices. However, the starting and ending points on the boundary of a polygon 

are very close to each other. That is, it is not reasonable to keep both of them. We keep only the starting 

points and delete the ending points. A possible consequence of this method is that one edge may be divided 
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into two when the starting point lies in the middle of an edge. However, such a case has a minor effect on the 

shapes or areas of the delineated polygons and thus can be ignored. The original direction of the boundary 

lines is preserved since it can show the quality of our building detection approach and can be assessed in the 

evaluation section. In addition, it is possible to create more errors during the process of changing the 

direction of boundary lines. The tolerance we used in the Douglas–Peucker algorithm is same as the α value 

in the alpha-shape algorithm since it is the largest neighbourhood searching radius in those algorithms. 

Although a smaller tolerance may reduce the number of self-intersecting polylines, it also increases the 

roughness of the boundary lines. The results of the extracted polygons are shown in the evaluation section, 

and the performance is assessed and discussed. 

 

5. Performance Evaluation 

 
5.1 Datasets 

 
The lidar data provided by Land and Property Information (LPI), New South Wales (NSW), 

Australia, was acquired over Bathurst, NSW, on 20 April 2011 with a commercial laser scanner 

Leica ALS50-II. The data is provided in LAS format containing up to 4 returns for each pulse. 

Multiple returns usually occur on the edge of buildings or trees that allow the laser beam to 

penetrate. The horizontal and vertical accuracy of the lidar data is 0.8 m and 0.3 m, respectively, 

with 95% confidence. The data has an average point density of 1.57 points per square meter. The 

processed data has been manually edited by LPI to meet the classification level 3 whereby the 

ground class contains minimal non-ground points such as vegetation, water, bridges, temporary 

features, jetties etc. The aerial image is obtained on 10 April 2013. The ortho-image contains 4 

bands including red, green, blue and infrared spectrum. Reference building polygons are digitized 

from this image and are used to assess the test results. 

 

 5.2 Evaluation method 

 
The evaluation process is divided into three categories including object-based evaluation, area-

based evaluation, and t-test comparison. The assessment is performed on two sites: Site A and Site 

B. For the object-based evaluation, the number of detected buildings and reference buildings are 

counted and used for the analysis. For the area-based evaluation, areas of the building polygons are 

used for all detected and reference entities. A paired t-test is also carried out in order to compare the 

difference between the digitized reference data and our results. 

 

5.2.1 Object-based evaluation 

 
Five indices are used for the object-based evaluation to evaluate the number of buildings counted in 

both extracted data and reference data. Completeness Cm , correctness Cr , quality Qi , detection 

fusion rate Du  and detection fission rate Di  are adapted from Awragjeb et al. (Awrangjeb, 

Ravanbakhsh et al. 2010). Originally, these indices were calculated by the matched pixels and the 

total number of pixels. In this semi-automatic processing, the equations are modified to represent 

the object-based accuracy of the extracted polygons as follows: 
𝐶𝑚 = 𝑟𝑒𝑓𝑐/𝑟𝑒𝑓𝑛                                                                             (2) 

𝐶𝑟 = 𝑒𝑥𝑡𝑐/𝑒𝑥𝑡𝑛                                                                            (3) 
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𝑄𝑖 = (𝐶𝑚 ∗ 𝐶𝑟)/(𝐶𝑚 − 𝐶𝑚 ∗ 𝐶𝑟 + 𝐶𝑟),                                   (4) 

where refc is the number of matched polygons in the reference data, extc is the number of matched 

polygons in the extracted polygons, refn is the total number of buildings in the reference and extn is 

the total number of buildings in the extraction. 

The remaining two are defined as: 

1. Detection fusion rate is the percentage of overlapped polygons where a single polygon in the 

extracted result represents multiple polygons in the reference. It is defined as 
 

𝐷𝑢 = (𝑟𝑒𝑓𝑚 − 𝑒𝑥𝑡𝑠)/𝑟𝑒𝑓𝑛,                                                     (5) 

where  refm is the number of overlapped multiple polygons in the reference and  exts is the number 

of single polygons in the extraction. 

 

2. Detection fission rate is defined as the percentage of overlapped polygons where multiple 

polygons in the extracted result represent a single polygon in the reference. It is expressed as 
𝐷𝑖 = (𝑒𝑥𝑡𝑚 − 𝑟𝑒𝑓𝑠)/𝑒𝑥𝑡𝑛,                                                          (6) 

where extm is the number of overlapped multiple polygons in extraction and refs is the number of 

corresponding single polygons in the reference. 

 

Table 1 shows the object-based statistics, while Tables 2-3 show the number of buildings of 

different classes. Ref 1 and Ext 1 refers to the reference data and the extracted results in Site A 

respectively, while Ref 2 and Ext 2 refers to those in Site B. The total number of buildings of area 

less than 30 m2 in Site A is three which are exactly those unmatched buildings, while the number in 

Site B is also three which are one less than the unmatched buildings. 
 

Table 1. Object-based assessment 

Object-based  𝐶𝑚 𝐶𝑟 𝑄𝑖 𝐷𝑢 𝐷𝑖 

Site A 96.34% 98.46 94.91% 21.95% 4.62% 

Site B 94.29% 92.73% 87.80% 21.43% 0.00% 

 

Table 2. Object-based statistics in Site A 

 
Total 

no. 
Fusion Fission No. of overlaps No. of non-overlaps unmatched matched 

Ref 1 82 30 3 33 49 3 46 

Ext 1 65 12 6 18 47 1 46 

 

Table 3. Object-based statistics in Site B 

 
Total 

no. 
Fusion Fission No. of overlaps No. of non-overlaps Unmatched matched 

Ref 2 70 23 0 23 47 4 43 

Ext 2 55 8 0 8 47 4 43 

 

5.2.2 Area-based evaluation 

 

For the area-based evaluation, areas of polygons are used for all detected and reference buildings. A 

total of five area-based indices are used, containing completeness (Cma), correctness (Cra), quality 

(Qia), area omission error (Ero) and area commission error (Erc).  
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These indices are calculated similarly as in the object-based evaluation. The intersection of 

extracted polygons and reference polygons is considered as correctly detected areas. Thus, these 

indices can be obtained as follows:  
𝐸𝑟𝑐 = (𝑒𝑥𝑡𝑎 − 𝑖𝑛𝑡𝑎)/𝑒𝑥𝑡𝑎                                                         (6) 

𝐸𝑟𝑜 = (𝑟𝑒𝑓𝑎 − 𝑖𝑛𝑡𝑎)/𝑟𝑒𝑓𝑎                                                         (7) 

𝐶𝑚𝑎 = 𝑖𝑛𝑡𝑎/𝑟𝑒𝑓𝑎                                                                          (8) 

𝐶𝑟𝑎 = 𝑖𝑛𝑡𝑎/𝑒𝑥𝑡𝑎                                                                          (9) 

where exta is the total area of buildings in the extracted polygons, inta is the total area of buildings 

in the matched/intersecting polygons, and refa  is the total area of buildings in the reference 

polygons. Table 4 shows the statistics of this evaluation method. 
Table 4. Area-based assessment 

Area-based  𝐶𝑚𝑎 𝐶𝑟𝑎 𝑄𝑖𝑎 𝐸𝑟𝑐 𝐸𝑟𝑜 

Site A 88.28% 91.35% 81.47% 8.65% 11.72% 

Site B 86.32% 88.83% 77.87% 11.17% 13.68% 

 

5.2.3 T-test comparison 

 

The t-test is suitable for determining the level of significance of difference of two sets of data; i.e., 

our extracted polygons and the reference polygons. If the null hypothesis cannot be rejected at a 

certain level, there is no significant difference between the extracted results and the reference on 

that level. In our test the area is analysed using a two-tail paired t-test, as the areas of the extracted 

polygons can either be greater or less than those of the reference. We only use matched polygons in 

the paired test. If one polygon in one dataset overlaps multiple polygons in the other dataset, we 

merge the attributes of the multiple polygons in order to perform the paired test. By doing so, there 

are 61 and 51 pairs to be compared finally in Site A and Site B, respectively. 

The formula to calculate the t value is, 

𝑡 = ( 𝑥 − ∆)/(𝑠/√𝑛),         (7) 

where x is the mean of the difference between two datasets, ∆ is the hypothesized difference, s is 

the standard deviation of the differences, and n is the data size. The number of degree of freedom 

for this test is n-1. We set ∆ to 0, and the null hypothesis is that there is no difference between the 

two paired areas in terms of the mean difference. We use a significant level of 0.01 and 0.05; i.e. 

α = 0.01 or α = 0.05. Using Equation (7), we can obtain the t value.  

𝑡𝑆𝑖𝑡𝑒 1 = 7.18/(36.65/√61) = 1.5301 

𝑡𝑆𝑖𝑡𝑒 2 = 10.71/(40.32/√51) = 1.8970 

By checking the t distribution critical-values table, we find 
𝑡𝑑𝑓=60,𝛼=0.01 = 2.6649 

𝑡𝑑𝑓=50,𝛼=0.01 = 2.6778 

𝑡𝑑𝑓=60,𝛼=0.05 = 2.0025 

𝑡𝑑𝑓=50,𝛼=0.05 = 2.0086 

Because the computed t values of 1.5301 and 1.8970 do not exceed 2.0025 and 2.0086, respectively, 

the null hypothesis cannot be rejected at the 0.05 level. We can also calculate the p value using the 

computed t value and the number of degrees of freedom. 
𝑝𝑆𝑖𝑡𝑒 1 = 0.1312 

𝑝𝑆𝑖𝑡𝑒 2 = 0.0636 
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Since α ≤ p, statistically, we can accept both of the null hypotheses at the 0.05 level. The null 

hypothesis of Site A can also be accepted at the 0.10 level. Overall, our method does not produce a 

significant error on the area of building polygons compared to the digitized reference.  

 

 5.3 Experiment Results and Discussion 
 

This experiment was implemented under Window 7 Enterprise SP1 using Matlab R2011b and 

ArcGIS 10.0. The process was semi-automatic i.e. the result for each step is obtained automatically 

while data type conversion and data transmission between different platforms is done manually. The 

aerial images and digitized references of building polygons can be seen in Figures 5-6. Samples of 

the extracted polygons in our test are shown in Figures 7-8. 

(a)  (b)  

Figure 5. Site A: (a) the aerial image, and (b) the digitized polygons 

 

(a)  (b)  

Figure 6. Site B: (a) the aerial image, and (b) the digitized polygons 
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(a)  (b)  

Figure 7. Site A: (a) the extracted polygons superimposed on the aerial image, and (b) the extracted polygons 

 

(a)  (b)  

Figure 8. Site B: (a) the extracted polygons superimposed on the aerial image, and (b) the extracted polygons 
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(a)  (b)  

(c)  

Figure 9. Single-multiple overlap areas: (a) the reference polygons in the single-multiple overlap areas, (b) 

the extracted polygons in the single-multiple overlap areas, (c) the single-multiple overlap areas 

 

As can be seen from Figure 9, a single polygon in the extracted result actually contains multiple 

polygons in the reference. We will call this phenomenon ‘single–multiple overlaps’. The aerial 

image (Figure 9c) shows that the gap between each building is very small (less than 1.5 m) and all 

the buildings are of similar heights. In our approach, different buildings were separated using 

hierarchical clustering based on a distance threshold; i.e., points that are close to each other are 

clustered as parts of the same building. Therefore, it is very difficult to separate these buildings 

within the lidar point cloud using a semi-automatic process. As a result, it will be difficult to 

perform the paired t-test and assess the object-based accuracy. What is done to resolve this problem 

is to merge the attributes (areas) of the multiple polygons with the geometrical characteristics 

preserved. In that case, when the paired t-test is conducted, the area of the single polygon in the 

extracted results is matched with the total area of three corresponding polygons in the reference. 

The errors caused by missing gaps, therefore, can be taken into account statistically. For the object-

based evaluation, the number of undetected buildings rather than the detected ones is counted in 

order to obtain the completeness (Cm). However, this index still contains the error caused by single–
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multiple overlaps. Therefore, we introduce the detection fusion rate and detection fission rate to 

represent such an error. A more statistically strict completeness can be derived using Cm − Du, 
while a more strict correctness can be calculated using Cr −  Di . Because these single–multiple 

overlaps are indeed detected due to the errors caused by the limitation of the lidar point cloud, it is 

suggested that the multiple polygons can be successfully detected. In the area-based evaluation, the 

single–multiple overlaps do not have an impact on the analysis.  

(a)  (b)  

Figure 10. Misidentification: (a) an example of misidentification, and (b) the original aerial image 

(a)  (b)  

Figure 11. Omission error: (a) an example of omission error due to the spike on the rooftop, and (b) the 

original aerial image 

 

In the t-test, the similarity of the paired polygons excluding the undetected ones is examined. The 

area-based assessment shows the overall quality of the results, while the t-test shows how close the 

extracted polygons are to the reference ones. The null hypothesis of both sites can be supported at 

the 0.05 level, while that of Site A can also be accepted at the 0.1 level. That is, the results are 

statistically very similar to the reference.  

 

A Semi-Automatic Method for Building Boundary Extraction from Airborne Lidar Data (8779)

You Shao and Samsung Lim (Australia)

FIG Working Week 2017

Surveying the world of tomorrow - From digitalisation to augmented reality

Helsinki, Finland, May 29–June 2, 2017



         

However, there are some omission and commission errors; i.e., unmatched polygons. An example 

of commission errors can be seen in Figure 10. In Figure 10, a building-like shed is misclassified as 

a building. Such misclassification is a critical problem since it is very difficult to distinguish those 

sheds from buildings with x,y,z coordinate information only, which is the limitation of lidar data. 

Another typical omission error can be seen in Figure 11. As we apply hierarchical clustering based 

on distance to separate buildings points and isolated points, if there is a spike that is much higher 

than the rooftop, the spike will be considered as residuals and removed. As a result, there will be 

small holes inside the boundary polygons. 

 

Overall, with all the assessments conducted, our semi-automatic approach is able to provide a 

reliable building extraction results. Future work may include separation of the single–multiple 

overlaps with the assist of an image-processing method.  
 

6. Concluding Remarks 

 
A semi-automatic approach to building extraction is proposed to take advantage of the point-based 

processing methods. Three steps are taken in the approach: ground filtering, vegetation removal, 

and building boundary delineation. In general, a progressive strategy is applied to detect and extract 

the buildings. That is, the unwanted points are classified and removed gradually rather than building 

points are obtained directly. First, an adaptive morphological filter is used to separate ground and 

non-ground features. The filter is designed to work directly on the lidar points. During the filtering 

process, the whole point cloud is scanned with a moving window in four directions. The size of the 

window is chosen automatically depending on the local situation. In the second step, a fusion of 

NDVI, thresholding and hierarchical clustering is applied to remove vegetation and the residuals. 

The majority of vegetation is initially detected by assigning NDVI values to all the non-ground 

points. Then the residuals are extracted by combining the clustering and thresholding methods 

based on the hypothesis that the residuals tend to be isolated or scattered. As a result, small clusters 

are removed and the majority of building points are preserved. In the final step, the boundary 

polygons are delineated using alpha shape and Douglas-Peucker algorithms. During the process, all 

the topology information is preserved in order to create polygons from points. The quality of the 

simplified polygons is assessed using the reference polygons digitised from the aerial images. 

Overall, the extracted building polygons are shown to be reliable with approximately 90% object-

based accuracy and 80% area-based accuracy. The t-test indicates that the correctly-extracted 

polygons are of great similarity to the reference data. 

 

It is demonstrated that this approach is able to create accurate boundary polygons with acceptable 

errors. Typical errors usually occur when there are insufficient boundary points due to overlaps and 

over-removal or when there are misclassified points which are difficult to distinguish from 

buildings. It is difficult to detect the actual shape of a building when the building is blocked or 

covered by a huge tree crown and there are almost no lidar points falling on the rooftop, which is 

the shortcoming of lidar data. It might possibly be solved by a fusion of different data types.  

 

There are several possible opportunities for future research that can be built on this study. The 

efficiency of the filtering algorithm can be enhanced by using other programming languages, or by 
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improving current coding. Moreover, high-resolution images can play a more important role in the 

building detection process, as the proposed method tends to preserve objects of similar attributes 

with buildings when lidar data is used as the main input data source. However, this improvement 

will require a fusion of image processing and point processing, rather than a point-based method 

alone. Another possible improvement is the extension of this study to a 3D scale through the 

inclusion of multiple data sources. Studies on the 3D reconstruction of rooftops can create more 

detailed boundaries and produce better visual representations of the buildings. 
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