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SUMMARY 

 

In deformation analysis, statistical methods have been used to detect displaced point(s) and to 

identify the characteristic feature of object with a high of probability. These methods can 

sometimes have wrong results; that’s why the reliability of the method should be known. 

However; to measure the reliabilities of the methods, it is required to know actual displaced 

point(s) before the analysis. Since it is impossible in practice, displacements of points are 

simulated. Displacement ellipse of point have been used to determine the magnitude of 

minimum detectable displacements of the point. However, the magnitudes and directions of 

semi-minor and semi-major axes are different, corresponding displacement circle can be used to 

calculate minimum detectable displacement. Displacement circle is an empirical method. Also, 

minimum detectable displacement based on the non-centrality parameter is also important for the 

sensitivity of a deformation network which is characterised its efficiency to detect displacements 

in the area covered by the network. This method is called theoretical method. In this study, we 

have investigated for answering the question “which method is more realistic?”. Both empirical 

and theoretical minimum detectable displacements have been calculated for horizontal control 

network and GPS network. At the same time, an empirical method based on global test for 

minimum detectable displacement has been estimated. The theoretical minimum detectable 

displacements changes for different power of the test value (e.g. 70%, 80%). It has been shown 

that the theoretical minimum detectable displacements converges to empirical minimum 

detectable displacements when the power of test is %70.   
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1. INTRODUCTION 
 

Being the cause of massive losses of life and property, deformation analysis is of vital importance 

in determining the movements originated from tectonics, landslides or man-made buildings (dams, 

bridges etc.). Conventional vertical, horizontal or three dimensional networks as well as GPS 

networks are established to control behaviour of these movements periodically. The main goal is to 

answer the question that whether any displacement occur or not. Various studies have been 

performed regarding deformation analysis (Pelzer, 1971; Caspary et al, 1983; Koch, 1985; 

Niemeier, 1985; Schaffrin, 1986; Caspary, 1988; Caspary et al., 1990; Schaffrin & Bock, 1994; 

Betti et al., 1999; Snow & Schaffrin 2007; Cai et al., 2008). 

 

Accuracy, reliability and sensitivity should be taken into consider in the geodetic deformation 

network design phase (Cooper, 1987). Accuracy refers to quality of the network. Reliability is the 

meaning of effect of the undetectable outliers on deformation analysis (Aydin & Demirel, 2005). 

Detectability of expected displacements and deformations at the designated network corresponds to 

sensitivity (Even-Tzur, 2006). To measure the efficacy of the Conventional Deformation Analysis 

(CDA), prior knowledge about which point has been displaced is needed. In practice, it is 

impossible to obtain this information; hence the points’ displacements have been simulated for 

various studies (Hekimoglu et al., 2010; Duchnowski & Wisnievski, 2014; Nowel & Kaminski, 

2014; Velsink, 2015; Nowel, 2015). 

 

There are three main factors affect the sensitivity of deformation network; network design, session 

duration (for GPS measurements) and accuracy of measuring instrument. Since the accuracy of 

estimated coordinates and their (co)variances depends on the all these factors, the network should 

be capable of detecting expected deformation magnitude. To determine the detectable displacement 

magnitude, the ellipses of the points are used as criterion. Displacement area is identified with the 

displacement ellipses. Standardized expected displacement ellipses of the points in the network can 

be used. Displacement ellipses are the global confidence region. If the magnitude of the estimated 

displacement vector lies entirely within the properly scaled expected point displacement ellipse, 

then there is no significant movement of the point at the chosen significance level α (Cooper, 1987).   

 

For the simulation, one main problem is how to generate the displacement magnitude in the 

deformation networks. In this study, our aim is to specify Theoretical and Empirical Minimum 

(Minimal) Detectable Displacements (TMDD, EMDD). These magnitudes have been used to 

compare with each other for Horizontal Control Network (HCN) and also GPS network. For this 

purpose; 3 points (A, B and C) of HCN and 3 points of GPS network (OBC1, OBC2 and OBC3) 

were chosen to calculate one TMDD and two EMDD’ s magnitudes. 
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Overview of this paper: After a review of the conventional deformation approach in Sect. 2, the 

paper gives in Sect. 3 a description of the EMDD. Sect. 4 presents TMDD and simulated networks 

have shown in Sect. 5. Conclusions are given about the results of the experiments in Sect. 6.  

 

2. CONVENTIONAL DEFORMATION ANALYSIS 
 

The typical CDA compares coordinate differences in a geodetic network between two different 

observation epochs. If H0 hypothesis rejected as expected movements by statistical tests, these 

differences are interpreted as being the “displacements.” Conventionally, the object and its 

surrounding are characterised by discrete points in deformation monitoring network and only the 

geometrical changes of the object are modelled. The monitoring network is adjusted as a free 

network for each epoch and coordinate differences between two different observation epochs are 

compared. The first step of the CDA is global congruency test. The model which suggests that the 

coordinates of corresponding points between two epochs do not change differently from 

expectations is formed as the null hypothesis (Welsch & Heunecke 2001) 

 

𝐻0: [−𝐈 𝐈] [
𝐸(�̂�𝟏)

𝐸(�̂�𝟐)
] = 𝟎                                                                    (1a) 

𝐻1: [−𝐈 𝐈] [
𝐸(�̂�𝟏)

𝐸(�̂�𝟐)
] ≠ 𝟎                                                                   (1b) 

 

where E() stands for expectation, �̂�𝟏 and �̂�𝟐 : The vectors of estimated coordinates of the first and 

the second epochs, �̂�𝟏 and �̂�𝟐 are estimated by free network adjustment as following equations: 

 

�̂�𝟏 = 𝐐�̂�𝟏�̂�𝟏𝐀𝟏
𝐓𝐏𝟏𝐥𝟏,  𝐐�̂�𝟏�̂�𝟏 = 𝐍𝟏𝟏

+ = (𝐀𝟏
𝐓𝐏𝟏𝐀𝟏)+                                          (2) 

�̂�𝟐 = 𝐐�̂�𝟐�̂�𝟐𝐀𝟐
𝐓𝐏𝟐𝐥𝟐,  𝐐�̂�𝟐�̂�𝟐 = 𝐍𝟐𝟐

+ = (𝐀𝟐
𝐓𝐏𝟐𝐀𝟐)+                                         (3) 

Ω = 𝐯𝟏
𝐓𝐏𝟏𝐯𝟏 + 𝐯𝟐

𝐓𝐏𝟐𝐯𝟐                                                                      (4) 

𝑠0
2 =

Ω

𝑓
, 𝑓 = 𝑓1 + 𝑓2                                                                          (5) 

 

where 𝐀𝟏 and 𝐀𝟐 : Design matrices of the first and second epochs, respectively, if the configuration 

of the network in different epochs is not changed 𝐀𝟏=𝐀𝟐, �̂�𝟏 and �̂�𝟐 : Vectors of estimated 

coordinates of the first and the second epochs, 𝐏𝟏 and 𝐏𝟐 : Weights matrices at the first and the 

second epochs, 𝐥𝟏 and 𝐥𝟐 : Observations vectors of the first and the second epochs, 𝐯𝟏 and 𝐯𝟐 : 

Residual vectors of the first and the second epochs, 𝐟𝟏 and 𝐟𝟐 : Degrees of freedoms of the first and 

the second epochs, respectively. 

 

Then, the influence of the null hypothesis on the Least Square Estimation (LSE), in the absence of 

correlations between epochs, results in (Pelzer 1971; Niemeier 1985; Koch 1985; Cooper 1987) 

 

𝐝 = �̂�𝟐 − �̂�𝟏                                                                                (6) 

𝐐𝐝𝐝 = 𝐐�̂�𝟏�̂�𝟏 + 𝐐�̂�𝟐�̂�𝟐                                                             (7) 

𝑅 = 𝐝𝐓𝐐𝐝𝐝
+ 𝐝                                                                     (8) 
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where d : difference vector of estimated coordinates, 𝐐𝐝𝐝 : Cofactor matrix of d, 𝐐𝐝𝐝
+  : 

Pseudoinverse of the cofactor matrix. 

 

𝑇 =
𝑅

ℎ𝑠0
2 ~𝐹ℎ,𝑓,𝑎, under 𝐻0, assuming normally distributed observations errors,  

 

h is the rank of the matrix 𝐐𝐝𝐝, 𝑎 : Error probability, 𝑠0
2 : Estimated variance component in the 

absence of the null hypothesis. 

 

If 𝑇 >𝐹ℎ,𝑓,𝑎, then the null hypothesis is rejected. Thus, the difference in the coordinates between two 

epochs is interpreted as the result of an unexpected displacement (Niemeier, 1985; Welsch & 

Heunecke 2001). 

 

3. EMPIRICAL MINIMUM DETECTABLE DISPLACEMENT 
 

The lengths and directions of the semi-axes of the expected displacement ellipses are different for 

each point in the network. Thus these ellipses are not convenient for a simulation which generates 

the magnitude of the displacement. To compare the successes of the CDA in different cases, a circle 

is chosen instead of an ellipse. The circle whose area is equal to the area of the expected 

displacement ellipse could be chosen as given in Fig. 1, so that the total area of the positive part is 

equal to the total area of the negative part. The radius of the displacement circle may be estimated 

as a mean value from the different radius for a given network (Hekimoglu et al., 2010). First EMDD 

magnitude calculated from the formulas shown as in the following section.  

 

3.1 Empirical Technique 1: Using Displacement Ellipse  

 

 

Fig. 1. Expected displacement ellipse and corresponding displacement circle of Point P (a and b are 

the semi-major and semi-minor axes of the expected displacement ellipse) (Hekimoglu et al., 2010). 

 

The formulas for the elements of the rescaled expected displacement ellipse and the corresponding 

displacement circle are given as follows: 
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int = 𝑞1𝑟 < |𝑧𝑖| < 𝑞2𝑟, 𝑞1 ≥ 1,  𝑞1 ≠ 𝑞2, 𝑞1 < 𝑞2 < 3                               (9) 

𝑎 = 𝜎0√𝜆1𝜒2,1−𝛼
2                                                                         (10)                                                                   

𝑏 = 𝜎0√𝜆2𝜒2,1−𝛼
2                                                                          (11)                                    

𝜆1 =
𝑄𝑑𝑥𝑖𝑥𝑖+𝑄𝑑𝑦𝑖𝑦𝑖+𝑤

2
                                                                    (12a)    

                                       𝜆2 =
𝑄𝑑𝑥𝑖𝑥𝑖+𝑄𝑑𝑦𝑖𝑦𝑖−𝑤

2
                                                                    (12b)                                          

𝑤 = √(𝑄𝑑𝑥𝑖𝑥𝑖 − 𝑄𝑑𝑦𝑖𝑦𝑖)2 + 4𝑄𝑑𝑥𝑖𝑦𝑖
2                                            (13)                                                    

𝑟 = √𝑎𝑚𝑒𝑎𝑛𝑏𝑚𝑒𝑎𝑛                                                              (14) 

 

where 𝑄𝑑𝑥𝑖𝑥𝑖 and 𝑄𝑑𝑦𝑖𝑦𝑖 = elements of the respective submatrix of the cofactor matrix 𝐐𝐝𝐝 from Eq. 

7, which belongs to the i
th

 point, 𝜆1 and 𝜆2 = Semi-major and semi-minor axes of the standardized 

expected displacement ellipse, 𝜎0
2 = A priori variance component, 𝜒2,𝑎

2  = 𝑎 - fractile of the 𝜒2
2-

distribution for 2 degrees of freedom, r = Radius of the corresponding displacement circle. 

 

The value of 𝑎 is chosen here as 0.001 so the stochastic effect is reflected almost entirely in the 

simulated displacement magnitude.  

 

3.2 Empirical Technique 2: Step Approach Testing 
 

Second EMDD magnitude was obtained by step approach testing. This technique estimates the 

minimum magnitude of displacement for different directions depending on the global congruency 

test that is given in Eqs. (6), (7) and (8). To reach the final step quicker, the first value has chosen 

randomly which can both detectable and reflects the stochastic model of network. Then first value 

was increased or decreased 0.1 mm to get the minimum displacement magnitude. 

 

3.2.1 Simulation of Displacement Vector 
 

To use in deformation analysis, the random errors were generated differently for each epoch. These 

vectors were added to free-error measurements. Only random errors (e1) were added to 1
st
 epoch 

measurements. For 2
nd

 epoch; both random errors (e2) and displacements of the points (𝐳) were 

added to free-error measurements. 1
st
 and 2

nd
 epoch measurements given as follows (Hekimoglu et 

al., 2010): 

 

𝐥𝟏 = 𝐥̅ + 𝐞𝟏                                                                     (15) 

𝐥𝟐 = 𝐥̅ + 𝐞𝟐 + 𝐀𝐳                                                                (16) 

 

Where e1 and e2 : normally distributed random error vectors, A : Coefficient matrix, 𝐳 : Horizontal 

displacement vector and 𝐥 ̅: the observation vector without random errors. 

 

𝐳 = [𝑧1𝑥 𝑧1𝑦 𝑧2𝑥 𝑧2𝑦 … 𝑧𝑢𝑥 𝑧𝑢𝑦]                                 (17) 
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zx : The projection of displacement vector z to x axes of the displacement,  zy : The projection of 

displacement vector z to y axes of the displacement. 

 

4. THEORETICAL MINIMUM DETECTABLE DISPLACEMENT  

 

The minimal detectable value can be used as a different approach to obtain the test value. Let dk and 

𝜎0
2 be the expected displacement vector and a priori variance of unit weight, respectively. To 

determine these displacemets the alternative hypothesis must be accepted as shown in the Eq. 1b.  

 

Then the test value is non-central F distribution and its eccentricity parameter is given as following 

equation: 

 

𝜆 =
𝐝𝐤

𝐓𝐐𝐝𝐝
+ 𝐝𝐤

𝜎0
2                                                                    (18) 

 

The eccentricity parameter for specific value, power of test 𝛾 = 1 − 𝛽, error probability α and 

degrees of freedom (h,𝑓 = ∞), is compared with the threshold value 𝜆0. If 𝜆 > 𝜆0 it is inferred that 

the deformation network is sensitive. This comparison process called as sensitivity analysis 

(Caspary et al., 1983; Niemeier, 1985; Cooper, 1987; Even-Tzur, 2006; Aydin et al., 2004).  

 

To determine the minimal detectable displacement magnitude of the points of network vector g that 

consists of movement direction is generated. For the two dimensional network the vector g is as   

 

𝐠 = [cos 𝑡1 sin 𝑡1 cos 𝑡2 sin 𝑡2 … cos 𝑡𝑝 sin 𝑡𝑝]𝑇                              (19) 

 

where p : The number of points, in vector g the components of the points which are considered as 

undisplaced is assumed as “0”. Thus the deformation vector is as 

 

𝐝𝐤 = a𝐠                                                                    (20) 

 

where a : The scale factor and it is computable. Then, by substituting Eq. (20) into Eq. (18) the 

equation has formed as 

 

𝜆 =
a2

𝜎0
2 𝐠𝐓𝐐𝐝𝐝

+ 𝐠                                                               (21) 

 

Then, by considering the inequation of 𝜆 > 𝜆0 with Eq. (21) the Eq. (22) is obtained as follows: 

 
a2

𝜎0
2 𝐠𝐓𝐐𝐝𝐝

+ 𝐠 > 𝜆0                                                              (22) 

 

From Eq. (22) the minimum value of “a” can be calculated as follows: 

 

a𝑚𝑖𝑛 = 𝜎0√
𝜆0

𝐠𝐓𝐐𝐝𝐝
+ 𝐠

                                                              (23) 
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From the Eq. (20) the minimum detectable displacement magnitude can be obtained at any desired 

point in any direction by using amin. 

 

5. SIMULATED NETWORKS 

 

5.1 Horizontal Control Network  
 

Horizontal Control Network was simulated shown as Fig. 2. The number of observations and the 

number of point are 72 and 9, respectively. The degrees of freedom is 48 (by taking 9 orientation 

unknowns into account) with regard to free network adjustment. The lengths of the distance 

measurements are varied approximately between 3 and 7 km. Random error vectors were generated 

from a normal random error generator. The random errors 𝑒𝑗𝑘 come from the different normal 

distributions 𝑁(𝜇 = 0, 𝜎𝑑
2), where 𝜎𝑑 was chosen to be the same for the direction measurements at 

each point, such as ±0.3 mgon and 𝜎𝑑 = ±3+2ppm mm for the distance measurements. 

 

 
Fig. 2. Horizontal Control Network (Erdogan 2011, Hekimoglu et al., 2010). 

 

The two epochs’ geometries are the same; so the weight matrices of the observations are equal to 

each other for the two epochs as follows (assuming no correlation between epochs): 

 

𝐏 = [
𝐏𝐝 𝟎
𝟎 𝐏𝐬

]                                                                                                 (24) 

 

Where 𝐏𝐝 = 𝑑𝑖𝑎𝑔(𝜎0
2 𝜎𝑑1

2⁄ , 𝜎0
2 𝜎𝑑2

2⁄ , … , 𝜎0
2 𝜎𝑑𝑚1

2⁄ ) (for direction measurements), 𝐏𝐬 =

𝑑𝑖𝑎𝑔(𝜎0
2 𝜎𝑠1

2⁄ , 𝜎0
2 𝜎𝑠2

2⁄ , … , 𝜎0
2 𝜎𝑠𝑚2

2⁄ ) (for distance measurements), 𝜎0
2 : The variance of unit weight 

is chosen as 0.009 mgon
2
, 𝑚1 and 𝑚2 : The number of direction measurements and the number of 

distance measurements, respectively, all assumed to be uncorrelated.  
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5.2 GPS Network 
 

Deformation network has 3 points which were established at the Davutpasa Campus of Yildiz 

Technical University, 4 points from TUSAGA-AKTIF (SARY, KABR, SLEE, ISTN) network and 

2 points from IGS network (ISTA, TUBI) as shown in Fig. 3. Thirty two baselines were observed in 

the network. Approximate baseline distances of the points used in the process stage with reference 

to ISTA varying from 14.2 to 99.8 km.   

 

The network were processed at Bernese v5.0 software with observing points OBC1, OBC2 and 

OBC3 (Dach et al., 2007). 7 hours measurements were considered at processing stage. The optimal 

values were used as stated in Bernese v5.0 guide. Precise GPS orbits and Earth rotation parameters 

(EOP) were obtained from IGS data center (International GNSS Service). Approximate coordinates 

were calculated for new points and receiver errors by one point positioning with ionosphere free L3 

frequency.  

 

 
Fig. 3. GPS Network (Erdogan 2011, Erdogan & Hekimoglu 2014) 

 

Cycle slips and outliers were checked by generating triple differences. Then, outliers were removed 

and cycle slips were corrected or initial phase ambiguity parameter were added to cycle slips which 

could have not corrected. Then using QIF (Quasi Ionosphere Free) technique initial phase 

ambiguity parameters were solved. Tropospheric zenith delay was disposed using Saastamoinen 

model. To use for defining the datum ISTA, which is IGS point and computed by SOPAC, was 

chosen at the datum 2005.0 and epoch 2010.835. 

 

Obtained three-dimensional Cartesian coordinates were transformed to local coordinate 

(Topocentric coordinate) system. Since the applied GPS measurement complied with the criteria in 
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the paper written by Eckl et al., 2001, the weight matrix was obtained by using the standard 

deviations given in this article.  

 

6. RESULTS OF EXPERIMENTS 

 

6.1 Results for Horizontal Control Network 
 

The components of displacement circle were obtained for points A, B and C which are assumed as 

displaced and radius was calculated as r = 29.9 mm. Then, the EMDD magnitudes were also 

calculated, using the 2
nd

 Empirical Technique: Step Approach test. To compare the magnitude with 

theoretical approach the minimum detectable displacements were computed at 40 different 

directions from Eqs. (19) - (20) with α = 0.05 and β = 0.20. The displacements magnitudes were 

obtained for α = 0.05 and β = 0.30 as well (Fig. 4, Fig 5, Fig. 6). 

 

 
Fig. 4. TMDD and EMDD magnitudes for point A 

 

“+” refers to displacement magnitudes which were obtained through 2
nd

 Empirical Technique: Step 

Approach Testing whose minimum detectable displacements magnitudes of each points were 

calculated and shown for at 10 grade intervals. 

 

“*” and “°” shows the TMDD magnitudes when α=0, β=0.20 and α=0, β=0.30, respectively. 

 

The field between two circles at Fig. 4, Fig. 5, Fig. 6 are corresponds to (r, 2r) interval that is 

obtained from 1
st
 Empirical Technique: Using Displacement Ellipse shown as sect. 3.1. This 

algorithm was used for calculating the radius of circles.  
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Fig. 5. TMDD and EMDD magnitudes for point B 

 

 
Fig. 6. TMDD and EMDD magnitudes for point C 
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The calculated TMDD magnitudes are greater than the displacements obtained from the empirical 

approaches. The TMDD magnitude is getting closer to EMDD magnitude when β=0.30.  

 

6.2 Results for GPS Network  
 

The up component was not considered in the GPS network processing. The results were calculated 

for two dimensional network (n = north, e = east). The components of the displacement circle were 

obtained for point OBC1, OBC2 and OBC3 which are called object points and the radius was 

computed as r=7.1 mm. Then, the EMDD magnitudes were also calculated, using the 2
nd

 Empirical 

Technique: Step Approach Testing. 

 

To compare the magnitude with theoretical approach the minimum detectable displacements were 

computed at 40 different directions from Eqs. (19) - (23) with α = 0.05 and β = 0.20. The 

displacements magnitudes were obtained for α = 0.05 and β = 0.30 as well (Fig. 7, Fig 8, Fig. 9).  

 

 
 

Fig. 7. TMDD and EMDD magnitudes for point OBC1 

 

The field between two circles at Fig. 7, Fig. 8 and Fig. 9 are corresponds to radius (r, 2r) interval 

that were obtained from 1
st
 Empirical Technique: Using Displacement Ellipse shown as sect. 3.1. 

This algorithm was used for calculating the radius of circles.  

 

“+” refers to displacement magnitude that were obtained by the 2
nd

 Empirical Technique: Step 

Approach Testing whose minimum detectable displacements magnitudes of each points were 

calculated and shown for at 10 grade intervals. 
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 “*” and “°” shows the TMDD magnitudes for α=0.05 and β=0.20, α=0.05 and β=0.30, respectively. 

 

 
 

Fig. 8. TMDD and EMDD magnitudes for point OBC2 

 

 
 

 

Fig. 9. TMDD and EMDD magnitudes for point OBC3 
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The calculated TMDD magnitudes are greater than the displacements obtained from the empirical 

approaches. The TMDD magnitude is getting closer to EMDD magnitude when β=0.30 for GPS 

network. 

 

7. CONCLUSIONS 

 

The MDD is very important for design of the deformation monitoring network. This value 

classically are estimated based on the α = 0.05 and β = 0.20. However, since it is a theoretical value, 

magnitude of TMDD changes depending on the α and β. In this paper, two different EMDD 

techniques have been shown for estimating the MDD. The magnitudes of the TMDD techniques are 

greater than the ones of the EMDD techniques. Accordingly, the simulation of the displacement 

should be based on EMDD techniques for the reliability estimation of the deformation analysis 

method. Otherwise, obtained result values from TMDD can be rather optimistic than most probable 

values. 
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