# **Constant Street Coordinates and a Geophysical Model (8174)** Dr. D.R. Roman and Dr. X. Li FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

**Diamond Partner** 

Organised by



**Platinum Partners** 





Land Information New Zealand

# Datum Defects of NAD 83 and NAVD 88





# FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster





**Platinum Partners** 

Trimble.



esri





## What will a future geometric frame look like?

- With only 15 minutes of GNSS data to have cm-level accuracy
- A more geocentric frame consistent with others (ITRF/WSG84)
- Will likely retain CORS (i.e., not PPP)
- Better velocities for all stations (Reprocessing)
- Agreeable datum for regional use (U.S., Canada, Mexico, etc.)
- More consistent tie for engineering and scientific applications
- Realized using Online Positioning User Service (OPUS) suite
- Passive bench marks serve as secondary access and for backup
  FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster





Platinum Partners





#### Implementation

- Foundation CORS tied to IGS solutions
- Reprocessing yields consistent CORS coordinates
- Bench Marks are then adjusted to fit CORS control
- **GNSS/OPUS** coordinates supersede bench mark values
- Velocities applied to revert back to datum epoch (2022.0) •
- Effectively provides "fixed" plate & state plane coordinates
- Permits use for RTK positioning at current epoch



CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster





Platinum Partners

Trimble



esr





#### **OPUS-RS** Quality Directly Depends on CORS Spacing



Organised by



Platinum Partners

Trimble.

5 esri



Land Information New Zealand Toitü te whenua

#### What will a future geopotential frame look like?

- Scientific basis that can be modeled & updated
  geoid change, MSL rise, local effects
- More consistency in heights across the region
- Better ties between geoid (MSL), TBM's (LMSL) & MODT
   Geoid (MSL) = LMSL MODT
- Better basis for comparisons with SIRGAS



CHRISTCHURCH, NEW ZEALAND 2–6 MAY 2016

Recovery

from disaster





Platinum Partners



esri



#### Which geopotential to pick for datum level or $W_0$ ?



### Coverage of primary future geopotential model



esri

New Zealand



#### Geoid Slope Validation Studies 2014 and 2017



- Survey Techniques
  - BM's installed ~1.5km
  - Leveling (double run)
  - Abs./Rel. Gravity
  - **Vertical Gravity Gradient**
  - Long-session GPS
  - **Deflection of Vertical**
- GSVS 11 sub-cm
- GSVS 14 prel. 2 cm
  - GSVS17 in planning

Recovery

from disaster



esri

**Diamond Partner** 





Organised by



Platinum Partners

Trimble.

# International Great Lakes Datum (IGLD) Replacement

- Current model (IGLD 85) based on NAVD 88 geopotential
- Update should be based on common geopotential model
- Each Lake would have it's own geopotential surface
- Likely some effects from currents, etc. (water topography)
- Ideal solution is a geopotential model at one arcminute
- Acceptable solution is a geoid height model combined with a gravity model at same resolution
- Current geopotential models only 5's => omission errors
  FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster





Platinum Partners





#### Why update? Same reason as for NAVD 88.



# **Collocated CORS and WLS Stations**



• Great Lakes WLS in IGLD 85

- U.S. side has 53 active stations
- CO-OPS visits annually to survey
- NGS GPS campaign 5 yr. cycle
- Looking to use OP vice BB
- Great Lakes CORS stations
  - Master WLS on each Lake
  - Lake Erie: Buffalo, Cleveland, Marblehead
  - Superior: Point Iroquois, Marquette, Grand Marais
- NGS surveys fix TBM positions to sub-cm relative accuracy
- CO-OPS survey makes mmlevel ties between TBM & WLS Platinum Partners







Organised by



#### **Comparisons on Lakes Erie and Superior**

| Site         | WLS     | CORS CORS ARP (IGS08)                    |          |            |   |             |            |         | ARP              | WL           |
|--------------|---------|------------------------------------------|----------|------------|---|-------------|------------|---------|------------------|--------------|
|              | ID      | ID                                       | Latitude |            | L | ongitude    | HAE        |         | toWL             | HAE          |
|              |         |                                          | (deg     | grees N)   | ( | degrees E)  | <b>(m)</b> |         | ( <b>m</b> )     | ( <b>m</b> ) |
| Buffalo      | 9063020 | BFNY                                     | 42       | 2.87755697 | 2 | 81.10955496 | 145.40     | 62      | -7.610           | 137.852      |
| Cleveland    | 9063063 | OHCD                                     | 41       | 1.54074488 | 2 | 78.36485371 | 144.58     | 82      | -5.932           | 138.650      |
| Marblehead   | 9063079 | OHMH                                     | 41       | 1.54368360 | 2 | 77.26854509 | 142.80     | 66      | -5.357           | 137.509      |
| Pt. Iroquois | 9099004 | PTIR                                     | 46       | 5.48458324 | 2 | 75.36915966 | 151.30     | 62      | -5.399           | 145.963      |
| Marquette    | 9099018 | MIMQ                                     | 46       | 5.54554809 | 2 | 72.62130392 | 155.10     | 02      | -7.337           | 147.765      |
| Grand Marais | 9099090 | GDMA                                     | 47       | 7.74855226 | 2 | 69.65874853 | 157.30     | 64      | -5.498           | 151.867      |
| Site         | IGLD    | Dynamic Heights (m) from Geopotential Nu |          |            |   |             |            | mbers ( | W <sub>i</sub> ) |              |
|              | 85 ht   | EGM20                                    | 08       | EIGEN6c4   | 4 | xGEOID15A   | _REF       | x(      | GEOID1           | 5B_REF       |
| Buffalo      | 174.197 | 173.                                     | 653      | 173.63     | 5 | 1           | 73.652     |         |                  | 173.648      |
| Cleveland    | 174.158 | 173.                                     | 582      | 173.57     | 0 | 1           | 73.564     |         |                  | 173.586      |
| Marblehead   | 174.144 | 173.                                     | 541      | 173.54     | 4 | 1           | 73.571     |         |                  | 173.566      |
| Pt. Iroquois | 183.580 | 182.                                     | 901      | 182.89     | 7 | 1           | 82.911     |         |                  | 182.906      |
| Marquette    | 183.614 | 182.                                     | 916      | 182.93     | 2 | 1           | 82.941     |         |                  | 182.931      |
| Grand Marais | 183.613 | 182.                                     | 890      | 182.89     | 1 | 1           | 82.908     |         |                  | 182.919      |

from disaster



Platinum Partners





# Summary

- Existing datums are treated separately
  - They both have meter-level defects
- Future datum will be combine geometric and geopotential
  - Consistent with global models but regional in nature
- GNSS-derived positions from OPUS at cm-level
- Coordinates used in geopotential/geoid model for heights
  - Orthometric heights for terrestrial and dynamic for Lakes
- Close ties between physical heights and ocean surface
- Regional usage of datum by multiple countries
  FIG WORKING Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster





Platinum Partners







Land Information New Zealand Toitü te whenua



**Questions**? Daniel R. Roman, Ph.D. dan.roman@noaa.gov +1-301-713-3200 x103



FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster





Platinum Partners

Trimble.





Land Information