

in 3D Indoor Models

-Focused on Application of IndoorLoD 2

HYOJIN JUNG, HYEYOUNG KANG, JIYEONG LEE

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Organised by

Platinum Partners

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Contents

- 1. Introduction
- 2. Level of Detail in 3D Models
- 3. Concepts of Indoor LOD
- 4. Experiment
- 5. Conclusion

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

1. Introduction

Need to represent indoor space for providing various indoor application

Many Services based on indoor GIS applications have gained greater attention

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

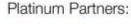
1. Introduction

Feature representation in Map scale

Cannot apply outdoor LoD

Macro-scale

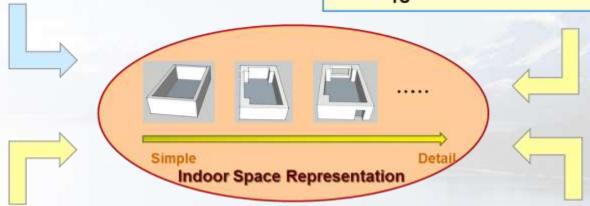
Micro-scale


Outdoor

Indoor

Propose concepts of LOD for indoor space based on indoor application services

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016


Recovery

from disaster

2. Considerations in Indoor LoD Model

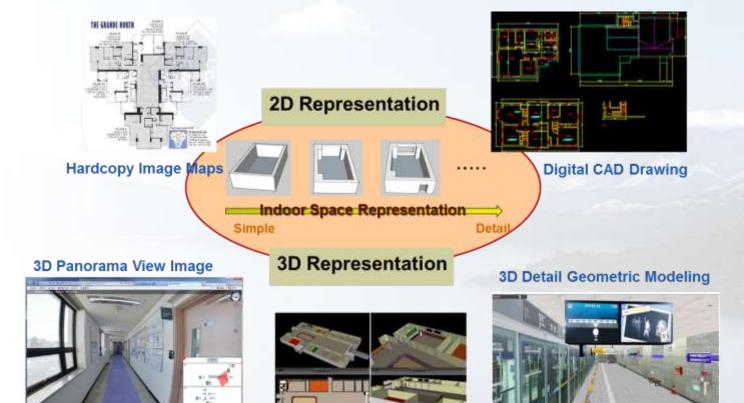
- · Geographical Scale Issues:
 - Generalization
 - Position Accuracy
 -

- Data Capture Methods:
 - CAD/BIM Tools
 - 3D Laser Scanners
 - Omni-Direction Camera
 - TS

- Application Issues:
 - Performance (Data Volume)
 - Affordability
 -

- Data Types:
 - 2D/3D Images
 - 2D/3D CAD (Surface-oriented)
 - · BIM (Volume-oriented)
 - TS (Wire-Frame)

Diamond Partner



CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

2. Considerations in Indoor LoD Model

3D Simple Geometric Modeling

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

3. Concepts of Indoor LoD

Image

Indoor LoD 1

Indoor LoD 2

Geometric Modeling

Indoor LoD 3

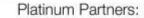
Indoor LoD 4

Indoor LoD 5

2D Layout Image

Omnidirectional Image

CAD Drawing


3D Simple Geometry + Texture

3D Detailed Geometry + Texture

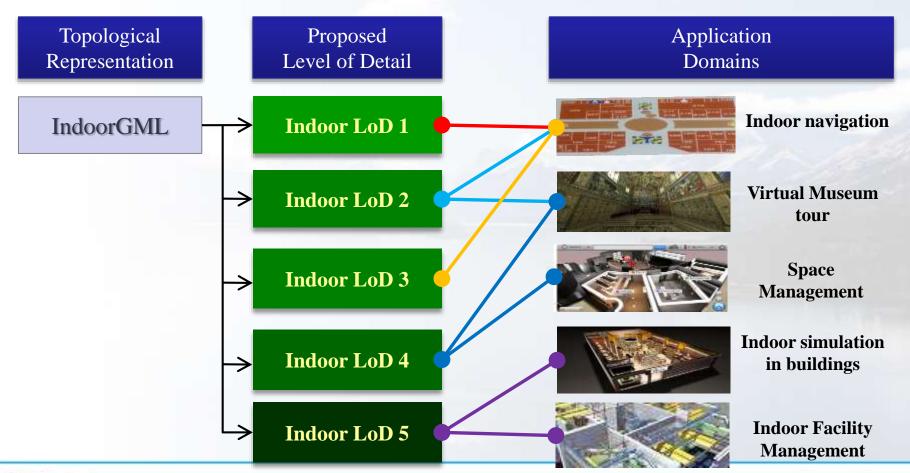
CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

3. Concepts of Indoor LoD

	Image Representation		Geometric Representation		
	Indoor LOD 1	Indoor LOD 2	Indoor LOD 3	Indoor LOD 4	Indoor LOD 5
Spatial Object Geometry Information	-	-	2D Curve	3D Solid (Representing vertical protrusion and sink of surface and slope)	3D Solid (Including sophisticated structures of surface)
Accuracy Classification (location(/height))	Low (1m)	Medium (1m)	Low	High (0.4/0.4m)	Very High (0.2/0.2m)
Visualization data	footprint	Panoramic Image	2D CAD Drawing	True Ortho Imagery	True Ortho Imagery
Application Field	Route Guidance	Store-view, Virtual Indoor Experience, Route Guidance	Route Guidance	Facility management, Virtual simulation, Disaster simulation	Facility management, Virtual simulation, Disaster simulation



CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

4. Experimental Implementation

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

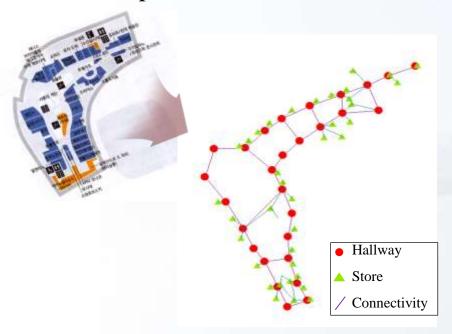
Recovery

from disaster

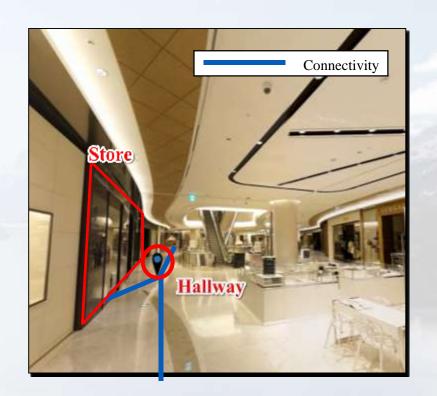
4. Experimental Implementation

Example (Based on Indoor LoD 2)

To provide more complicated service like facility management or disaster simulation in Indoor LoD 2, relation between space and topology have to be defined


CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery


from disaster

4. Experimental Implementation

Example (Based on Indoor LoD 2)

- Hallway, Store(Space) \rightarrow Node
- Space's connectivity → Edge

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

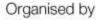
from disaster

5. Conclusion

- This study focused on indoor LoD model for representing indoor space based on indoor applications
 - Consider issues of indoor representation
 - Apply proposed indoor LoD 2 to specific case

Future Work

- Specify proposed indoor LOD model
- Implement experiment for connecting with topological data



from disaster

