Presented at the formation of the format

the ficture of to mained

Farming Businesses

Greenvale Pastures Ltd • 200 ha intensive cropping

Agri Optics New Zealand Ltd

Precision Agriculture company

Three Springs Dairies Ltd330 ha high output dairying

Mackenzie Research Group Ltd
 Farming technology

Nuffield Scholarship "Understanding our Carbon Footprint in Farming Systems"

Grain Drying
 - China

80-a-side parallel shed
 USA

Global Farmer Roundtable

World Food Prize – Des Moines, Iowa

Precision Agriculture from Innovation to Field in Water Efficiency

the Sustainable Use of Irrigation Water.

The best way to predict the future is to create it

Abraham Lincoln

Profit Mapping

Its hard to be Green when you're in the Red

Water and its Use in Agriculture

- Globally, water quality is deteriorating
- 1 in 6 people are water stressed (UN), not having direct access to drinking water
- Estimated that Agriculture uses 70% world's fresh water
- Irrigation has always been vital to crop and food production
- Irrigated farm land uses 2% of the world's rainfall
- Only 17% of crop land is irrigated but it produces 40% of the worlds food.
- Colorado study showed 89% of farmers used history or the look of the crop for irrigation scheduling
- WUE : Rice consumes 39% of the worlds irrigation water
 In India its 3500 l/kg, in China hybrids use 1750 l/kg
- GM might reduce water use by 30-40%

Water allocation, use and quality all need to be addressed

Things we need to know about Irrigation

- Our farm soil types and WHC
- Incorporate rainfall into our irrigation schedules
- The \$ return for every mm applied
- The cost per mm applied under various systems
- The water use efficiency of different crops
- About instantaneous water application and its effects
- Infiltration rates of our soils.

From the Ground Up

Farming starts with the soil

- Know your soil type
- Know your water-holding capacity (whc)
- Know your soil's potential
- Understand your farm's variability

Sustainability needs to be built in - not bolted on

Evre3z(60%)

- Different pattern to S-Map
- GIS site specific detail
- Accurate to individual farm
- Makes targeted management easier
- Useful going forward for informing Overseer inputs

EM Surveying for Irrigation Management

- Neutron probes placed in different soil zones to enable fine tuning of management
- 127mm of AWC variation so need differential management

	Full Point (mm)	Stress Point (mm)	Zone Area
Site 1	187	139.5	0.6
Site 2	233	178	3.0
Site 3	228	178	5.4
Site 4	232	178	7.2
Site 5	181	134	3.6
Site 6	106	70	0.6

EM Surveying for Irrigation Management

	Full Point (mm)	Stress Point (mm)	2011/12 Wheat Yield (t/ha)
Site 1	187	139.5	17.56
Site 2	233	178	12.31
Site 3	288	178	13.26
Site 4	232	178	15.58
Site 5	181	134	16.48
Site 6	106	70	10.00

- Sites 1, 4 and 5 had highest yields in 2012
- Anticipated that sites 2 and 3 would have highest yield due to heaviest soils
- Over-watering occurred causing a yield penalty

Average loss of yield from Zones 2 and 3 = 3.79t/ha

or <u>\$1064/ha</u> when compared to Zone 4

VARIABLE RATE IRRIGATION WAS INSTALLED IN 2012 TO ELIMINATE THIS PROBLEM!!

Irrigation Management

- We've come a long way with technology, hardware and science We use variable rate irrigation (VRI)
- Get an accurate understanding of the spatial variability of soils.
 We use data from EM Survey
- Understand the water holding capacity of each soil type to be irrigated
- Situate soil moisture probes by zone and water holding capacity

Variable Rate Irrigation

AquaCheck Soil Moisture probes

•Greenvale Pastures soil moisture status over several zones using VRI to control moisture level in each zone individually.

- Aiming for the flattest line possible
- On Greenvale 35 individually managed zones

Science on the Farm

NIWA

aihoro Nukura

Lysimeter - ECan

Measure / Model /Manage

- Measuring leaching in a real situation
- Accurate figures needed for NZ regulatory schemes
- Need to show what we are doing to the wider public
- Urban Rural Connection

Its all about being engaged

Science on the Farm

Irrigation Management

- Understand individual crops requirements
- Irrigate to appropriate levels to capture all rainfall events while avoiding drainage to eliminate any environmental impact.
- Incorporate accurate weather forecasting into irrigation scheduling. We use FarmMet
- Management available at your fingertips from anywhere in the world

Outstanding Farmers still need to be out standing in their fields

Variable Rate Effluent

EM Map

AquaCheck soil moisture Probes

- Site-specific application of nitrogen
- Up to 30% reduction of applied nitrogen without production loss.
- Reduces N₂O & NO³ emissions.

Nutrient Budgets & Overseer®

Overseer Nutrient Budget

- Includes all nutrients e.g. fertiliser, effluent,
- Helps reduce fertiliser inputs
- Help access profitability
- Increased understanding of models for future use

Trimble Juno for GPS location

http://www.overseer.org.nz

The Value of EM Mapping in Overseer

	Estimated N Leached / Ha				
% OF AREA	EM, VV	EM, FV	EM, VF	EM, FF	
9%	39	43	58	142	
3%	24	24	26	67	
7%	39	43	58	141	
4%	23	22	24	65	
15%	48	53	68	154	
11%	32	31	33	76	
11%	39	43	58	141	
6%	24	24	26	67	
33%	39	43	58	141	
100%	39	42	54	127	

	Estimated N Leached / Ha			
% OF AREA	VV	FV	VF	FF
12%	39	43	58	142
12%	39	43	58	141
26%	48	53	68	154
18%	39	43	58	141
33%	39	43	58	141
100%	42	47	62	146

Big Data in the Cloud

Getting Connected

We're a Connected Farm

- 3G connection farm office and machinery
- WiFi connection farm office and irrigators, soil moisture probes
- 3G connection Irrigators, software server and cellphones
- 3G connection wells and irrigation auditor
- GPS on all irrigators, combine and tractors all with autosteer

Rural Connectivity is a huge issue for NZ development

Keeping Connected

Three Pillars of Sustainability:

- Farmers
- Industries
- Rural communities
- Urban communities
- Lobby groups
- Central & Local Government

Its all about working together

Exciting times for Agriculture -What tools to choose?

"the future of farming"

OPTIC:

Exciting times for Agriculture

Good sustainable farming practices and profitable farming practices go hand in hand

