

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2-6 MAY 2016

Recovery

from disaster

Platinum Partners

Diamond Partner

Land Information New Zealand Toitū te whenua

Empirical Models of Vertical Crustal Motion in the Great Lakes Region

Elena RANGELOVA and Dimitrios PIRETZIDIS

Platinum Partners:

Land Information

Diamond Partner

- A new geoid-based reference surface (N) for physical heights (H) adopted in Canada in November 2013
 - Use GPS/GNSS ellipsoidal height (h) and N to obtain H
- The one centimetre-level geoid error requires the time variation of it be accounted for on a decadal time scale.
- The crustal motion should also be accounted for on a shorter time scale so that the equation H = h N holds both in space and time.
- Why the Great Lakes region?
 - Glacial isostatic adjustment of the crust and geoid
 - Line of zero motion, an important constraint for geodynamic modelling
 - Concentration of geodetic control stations (CGPS and EGPS data)

Platinum Partners:

Diamond Partner

CONTENT

- Objectives
- Data sets
 - GRACE vertical motion rates
 - Filtering effects on GRACE rates
 - GPS vertical crustal velocities
 - Overview of the errors of the two data sets
- Least-squares adjustment model
- Analysis of the combined vertical motion surface
- Discussion

Platinum Partners:

Diamond Partner

Land Information New Zealand Toitů te whenua

OBJECTIVES

- Combine optimally the available heterogeneous vertical crustal motion data
- Calibrate data variance-covariance matrices
- Assess whether the GRACE and GPS vertical velocities converge

Platinum Partners:

Trimble

Diamond Partner

from disaster

esri

GRACE VERTICAL MOTION RATES

- 144 months of CRS RL05 GRACE data (April 2002 to August 2015)
- The mean field is subtracted from the time series
- GLDAS hydrology model correction
- De-striping filter and isotropic smoothing (a 400 km filter radius)
- Vertical rates of crustal motion calculated by a second isotropic filter

$$\dot{h}(\varphi,\lambda) = R \sum_{l=2}^{50} \frac{2l+1}{2} W_l \sum_{m=0}^{l} P_{lm}(\sin\varphi) \times \left[\dot{C}_{lm}\cos(m\lambda) + \dot{S}_{lm}\sin(m\lambda)\right]$$

Platinum Partners:

Trimble

Diamond Partner

from disaster

esr

FIG Working Week 2016 CHRISTCHURCH, NEW ZEALAND 2–6 MAY 2016 Recovery

GIA model: ICE-6G_C (VM5a) by Peltier et al.

GRACE model 1 (UofC)

GRACE model 2 (UofC)

GPS VERTICAL VELOCITIES

- 71 GPS points (IGb00) in both Canada and USA
 - Sella et al., (2007): 57 CGPS and 14 EGPS stations (Canada)

OVERVIEW OF DATA ERRORS

- Long-wavelength errors in the GRACE data
 - Geophysical signals leakage and hydrology model errors
- Distortions of the GRACE-derived vertical motion surface
 - introduced by the de-striping and smoothing filters
- Different reference epochs and time span of data series
- Scale factors of variance-covariance (VC) matrices not known
- The GRACE vertical motion VC matrix is fully populated

Platinum Partners:

Diamond Partner

esr

Land Information New Zealand Toitü te whenua

Diamond Partner

Platinum Partners:

Estimated GRACE data bias in mm/yr and tilt in mm/yr/deg

Method	Bias	NS tilt	EW tilt
Least-squares adjustment	2.10 ± 0.10	0.12 ± 0.07	0.04 ± 0.04
Iterative re-weighting least-squares	2.06 ± 0.15	0.09 ± 0.07	0.04 ± 0.04

Platinum Partners:

Trimble.

esri

Diamond Partner

Statistics of the a-posteriori errors of GRACE and GPS velocities in mm/yr

Data set	Min	Max	Mean	
A priori errors				
GRACE	0.6	0.6	0.6	
GPS	0.5	5.3	2.0	
Least-squares adjustment				
GRACE	0.2	0.2	0.2	
GPS	0.4	4.2	1.7	
Iterative re-weighting least-squares				
GRACE	0.5	0.8	0.6	
GPS	0.3	4.1	1.3	

Platinum Partners:

Trimble.

esri

Diamond Partner

DISCUSSION

- The line of zero motion in the lakes area is well constrained by the geodetic observations.
- If outliers are present in the data, these data points are down-weighted and preserved in the optimal combination
 - Baarda's data snooping can test a good observation as an outlier or may fail to detect a single outlier in peripheral areas with less data constraints.
 - The pattern of vertical motion surface could change globally because base functions are global.
 - IRLS keeps more data constraints in the peripheral areas.

Platinum Partners:

Diamond Partner

DISCUSSION

- The increased time span of the GRACE mission has lead to vertical motion rates that converge to GPS velocities
 - The estimated GRACE bias has decreased by 2 mm/yr due to the additional 5 years of data since the previous study.
 - GRACE tilt became less significant
 - NW tilt: -0.21 ± 0.08 (8 years of data) 0
 - NW tilt: 0.12 ± 0.07 (13 years of data) 0
 - The spread of residuals decreased
 - GRACE: from ± 0.4 mm/yr to ± 0.2 mm/yr 0
 - GPS: from ± 1.5 mm/yr to ± 1.3 mm/yr Ο

Platinum Partners:

Diamond Partner esr

Trimble.

Peltier, W.R., Argus, D.F., and Drummond, R., 2015, Space geodesy constrains ice a^{from disaster} terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 2014JB011176.

Rangelova, E., Fotopoulos G., Sideris, M.G., 2009, On the use of iterative re-weighting leastsquares and outlier detection for empirically modelling rates of vertical displacement, J. Geodesy, 83, 523-535.

Sella, G.F., Stein, S., Dixon, T. H., Craymer, M., James, T.S., Mazzotti, S., Dokka, R.K., 2007, Observation of glacial isostatic adjustment in "stable" North America with GPS, Geophys. Res. Lett., 34:L02306, doi:10.1029/2006GL027081.

Wahr, J., Wingham, D., Bentley, C., 2000, A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance, J. Geophys. Res., 105(B7), 16,279-16,294.

Platinum Partners:

Diamond Partner

THANK YOU!

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2–6 MAY 2016

Recovery

from disaster

Platinum Partners

Diamond Partner

Land Information New Zealand Toitū te whenua