Towards, a modernized geodetic datum for Nepal: Options for developing an accurate terrestrial reference frame following the April 25, 2015 Mw7.8 Gorkha earthquake

> Chris Pearson Niraj Manandhar Paul Denys

FIG Working Week 2016

CHRISTCHURCH, NEW ZEALAND 2–6 MAY 2016

Recovery

from disaster

Platinum Partners

Diamond Partner

Land Information New Zealand Toitü te whenua

Modernized geodetic datum aligned with ITRF2014 Coordinates transformed to 1 Jan 2016 using the a national deformation model

How the NDM works

Secular velocity field

- Velocity from four recent studies were aligned with the ITRF2014 velocities
- The combined velocity field was used to produce a grid file with a density of 20 points/degree

Earthquake Models

 Displacement grids developed from published dislocation models with a density of 20 points/degree

Adjustment of GPS before and after the Gorkha Earthquake

Control

- The stations of the CALTECH network now operated by UNAVCO can be adopted as a 0 order network of CORS
- However the stations will have to be processed using specialist GNSS software to give coordinates precisely aligned to the ITRF
- Coordinates for lower order control will be determined by readjustments and new surveying.

Conclusions

- datum aligned to a realization of the ITRF
- common reference epoch after the recent sequence of earthquakes
- deformation model
 - Velocity model
 - Earthquake displacements
- Control
 - Top level control CORS network
 - Establish lower order control relative to the CORS
 - New marks surveyed with GPS
 - Readjust existing measurements
- correction grids to transform geodatabases from Nepal Everest into the new system.
- Support in commercial software