

Deformation Monitoring Based on Wireless Sensor Networks

Zhou Jianguo

tinyos@whu.edu.cn


















high-rise buildings

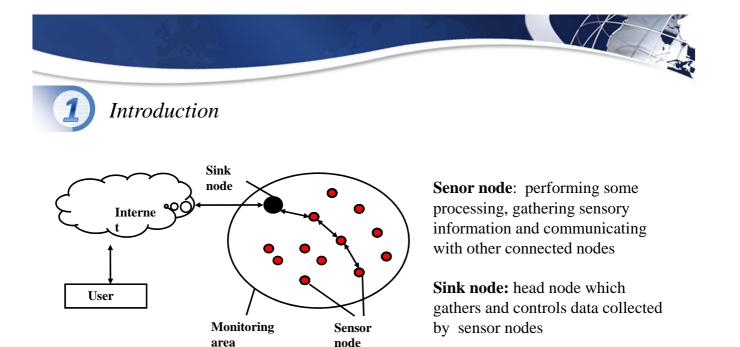
dams

bridges

Deformation monitoring of large structures

*Deformation monitoring*: use professional instruments and methods to measure the structures, analysis the deformation characters and make proper deformation prediction.






# Introduction

# Some current techniques

| Method type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | Precision | Sampling rate                                | Contact to the targets                             | Remarks                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|----------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inclinometer<br>Accelerometer | High      | High                                         | Yes                                                | Not direct results                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fiber optic sensor            | High      | High                                         | Yes<br>need to be embedded<br>within the structure | High sensitivity to environmental change              |
| - Contraction of the contraction | Differential GPS              | High      | High<br>dynamic characteristics              | Yes                                                | Influenced by<br>multipath effect;<br>complex process |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Station                 | High      | Very low<br>not suit to spectrum<br>analysis | Yes<br>need prisms                                 |                                                       |





Wireless Senor Networks: based on the development of MEMS, system on chip (SoC), wireless communications and embedded technologies



# Introduction

Advantages of wireless sensor networks for deformation monitoring:

Automatic
Continuous and dynamic monitoring
Time-and-effort-saving
Low cost

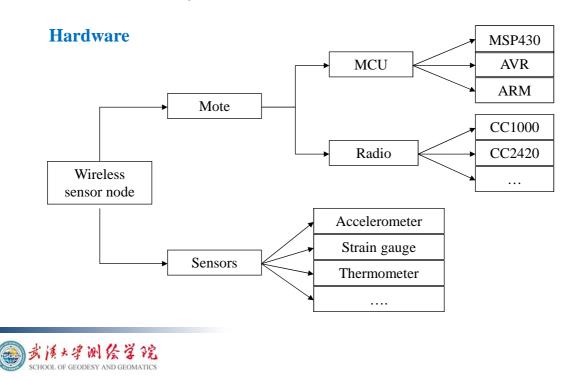
Limitations:

- **Storage capacity**
- **Calculation ability**
- **Bandwidth**
- **Energy** supplement









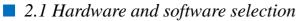

Deformation Monitoring Framework Based on Wireless Sensor Networks





2.1 Hardware and software selection






# 2.1 Hardware and software selection

# Motes and Sensors in Typical Monitoring Cases

| Monitoring Case           | Mote          | Institute                                                                                              | MCU          | Radio  | Sensors                                                       |
|---------------------------|---------------|--------------------------------------------------------------------------------------------------------|--------------|--------|---------------------------------------------------------------|
| Seismic Test<br>Structure | Mica2         | Computer Science<br>Department, University of<br>Southern California                                   | Atmega128L   | CC1000 | Vibration card                                                |
| Golden Gate<br>Bridge     | Micaz         | Civil and Environmental<br>Engineering, UC Berkeley                                                    | Atmega128L   | CC2420 | Dual-axis<br>accelerometer,<br>thermometer                    |
| Stork Bridge              | Tmote-<br>sky | Structural Engineering<br>Laboratory, Empa Dübendorf,<br>Switzerland                                   | MSP430       | CC2420 | Dual-axis<br>accelerometer,<br>thermometer                    |
| Jindo Bridges             | Imote2        | Department of Civil and<br>Environmental Engineering,<br>University of Illinois at<br>Urbana-Champaign | Intel PXA271 | CC2420 | Triaxial<br>accelerometer,<br>thermometer,<br>hygrometer etc. |
| Zhengdian<br>Bridge       | S-Mote        | Department of Control<br>Science and Engineering,<br>Huazhong University of<br>Science and Technology  | MSP430F1611  | CC2420 | Dual-axis<br>accelerometer,<br>strain gauge                   |





#### Software

#### TinyOS:

- **Developed by UC Berkeley**
- Open source
- **Component-based architecture**
- □ NesC language

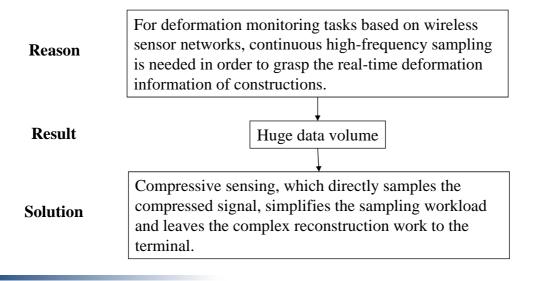
#### Mantis OS:

 Developed by University of Colorado
Standard C language

#### 意法大学网会学院 School of Geodesy AND Geomatics

#### Contiki:

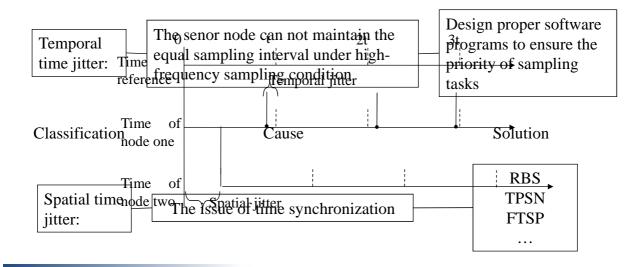
 Developed by Swedish Institute of Computer Science
Multiple task
High portability


#### SOS:

 Developed by University of Los Angeles
Standard C language



#### 2.2 Data sampling


#### High-frequency sampling





## 2.2 Data sampling

## Time jitter







2.3 Data transmission

#### Data compression

#### Reason for compression:

Huge size of data and limited bandwidth

Advantages of compression:

Reduce storage space, improve the transmitting, storing and processing efficiency

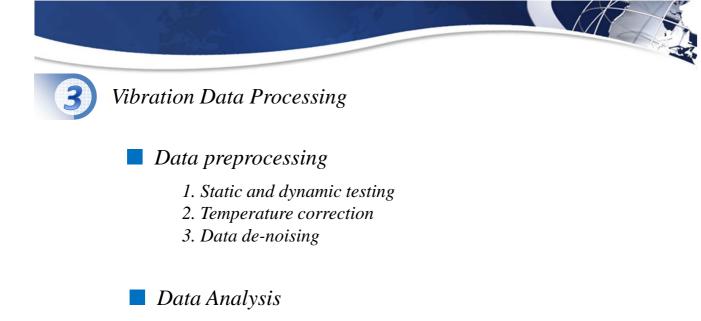
Run-length coding

Huffman coding

Arithmetic coding

Lossy compression

Lossless compression


Compressive sensing Wavelet transform

KL transform









- 1. Time domain analysis
- 2. Frequency domain analysis
- 3. Modal domain analysis





# ■ 3.1 Data Preprocessing

### Static and dynamic testing

Calibrate the acceleration sensors using a highly precise accelerometer

### **Temperature** correction

Record real time temperature information in monitoring environment to correct the output values of the acceleration sensors

### Data de-noising

Reduce or eliminate the impact of noise in data analysis.

Median filtering, Kalman filtering, Wavelet analysis and Empirical mode decomposition, etc.



■ 3.2 Data Analysis

## Time domain analysis

□ Vibration signals collected by sensor nodes need to be converted into velocity and displacement signals:

$$v(t) = \int_{0}^{t} a(t)dt = v'(t) + v_{0} \qquad s(t) = \int_{0}^{t} v(t)dt = s'(t) + s_{0}$$

□ Calculate the correlation function, including autocorrelation function and cross-correlation function:

▲ N\_k

Autocorrelation

ation 
$$R_{xx}(k) = \frac{1}{N} \sum_{i=1}^{N-k} x(i)x(i+k)(k=0,1,...,m)$$
  
elation  $R_{xy}(k) = \frac{1}{N-k} \sum_{i=1}^{N-k} x(i)y(i+k)(k=0,1,...,m)$ 

Cross-correlation





**3.2** Data Analysis

# Frequency domain analysis

Calculate the power spectral density function of the random vibration signal based on Fourier transform. It can be divided into self-power spectral density function and cross-power spectral density function.

$$S_{xx}(k) = \frac{1}{N} \sum_{r=0}^{N-1} R_{xx}(r) e^{-j2\pi kr/N}$$
$$S_{xy}(k) = \frac{1}{N} \sum_{r=0}^{N-1} R_{xy}(r) e^{-j2\pi kr/N}$$

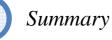
The methods to calculate power spectral density function can be divided into non-parametric approach and parametric one.





**3.2** Data Analysis

## Modal domain analysis


Analysis in modal domain is to identify the modal parameters. Modal parameters identifications can be divided into methods in time and frequency domains according to data processing mode.

- Time domain methods: Time series, Random decrement, NExT, Stochastic subspace and Modal function decomposition.
- Frequency domain methods: Peak picking method and Frequency domain decomposition method









Wireless sensor networks brings new ideas for structures' deformation monitoring with the characteristics of low power consumption, low cost, being distributed and self-organized.

□ Hardware and software mote, sensor, TinyOS...

**Data sampling** high frequency sampling, time jitter

**Data transmission**. data compression, data loss

**Data preprocessing** testing, correction, data de-noising

**Data processing** time domain, frequency domain, modal domain

委演大学网会学院 school of Geodesy and Geomatics



Thanks for your time

