

Parameter	Using all the points	Using the proper points
t _x (m)	87.359±0.017	87.390±0.02
t _v (m)	91.181±0.017	91.224±0.02
t _z (meter)	127.494±0.017	127.541±0.02
$\varepsilon_{\mathbf{x}}(\text{arcsecond})$	-3.808±0.212	-3.658±0.212
$\varepsilon_{\rm v}$ (arcsecond)	0.132±0.325	-0.102±0.38
ε_{z} (arcsecond)	1.550±0.190	1.666±0.22
k (ppm)	3.245±0.827	3.170±0.95

Conclusions

Applying this method, one can

- avoid unreliable transformation parameters caused by improper number and distribution of the common points,
- avoid producing redundant common points, and thus provides cost-effective solutions,
- provide further information, such as possible distortion and absorption, about the common points, so one can carry out a more rigorous analysis for the point selection. For instance, some components of some common points may need to be eliminated while some may be kept for a reliable solution.

06.05.2009

TS5C_3468

