

DISTORTION MODELING

EXPERIMI There is a territory	ENTS AND RE great variability	SULTS - DISTOR	RTION ANALYSI	s azilian
5.7	Distortion	Latitude (m)	Longitude (m)	
	Minimum	-5.661	-3.6/6	and the second sec
	Maximum	5.338	3.696	1 1: 1 Martin
2 days	Average	-0.437	0.011	ency - South
	Standard deviation	0.627	0.532	and the second s
	RMS	0.764	0.032	
			not systematic b	vehavior – Middle West

chniques
chniques
chinques
Resultant
0.8187
0.6947
1.0732
0.2179
0.3382
b) 0.4020 (-63%)
6 418→96.09%

FINAL CONSIDERATIONS AND CONCLUSIONS

FINAL CONSIDERATIONS AND CONCLUSIONS

In this paper, a contribution related to the modeling distortion process was realized, considering SAD69 (realization of 1996) and SIRGAS2000 reference frames

The average distortion computed was of about 0.254m with a precision indicator of 0.152m $\,$

The experiments using the test stations showed that the stations originated from satellites techniques do not require corrections.

The good results obtained show that the approach used appears to be very promising, as well as the Shepard method looks appropriated to the grid generation

FIG Working Week 2008 – Integrating Generations

