FIG Working Week 2007, Hong Kong

Use of 3D Laser Scanner for Rock Fractures Mapping

Alan K. L. Kwong
Dep
Civil
Civil
Engineering, The

University of
Hong Kong
Henry Kwok, Andrew Wong
Leica
Geosystems
$\underset{\text { Soicas }}{\text { Losysems }}$

Evolution of Indirect Capturing Method of X , Y and Z Coordinates:

1. Theodolite
2. EDM
3. Total Station

No color pixel

1 M color pixel per image taken
4. Laser Scanner
5. Terrestrial Photos taken from laser scanner integrated with camera

Why Laser Scanning?

Conventional Methods:

- Accurate, but limited to selected locations.

Laser Scanning:

- Acquire several millions of 3D points over an entire structure.
- Provide a complete representation of the structure.

Use "Camera Match", assign the CamPoint position and adjust the Camera Coordinates until the Error is less than 1.

Comparisons of Measured and Calculated Dip
Angle and Dip Direction

Comparisons of 5 Joint Plane Orientations (compass versus calculated)							
Plane	From compass Dip Direction	Dip Angle	From Linear Regression		Difference (Compass-Linear Regression		
			Dip Direction	Dip Angle	Dip Direction	Dip Angle	
	Degree	Degree	Degree	Degree	Degree	Degree	
1	24	82	21	81		1	
2	9	85	7	83		2	
3	344	75	340	71		4	
4	356	6	355	7		-1	
5	349	15	345	14	4	1	
					About differe scale	t 3 degree ences due to effect	

Computation of Dip Angle and Dip Direction

Equation of a best-fit plane
$z=b_{0}+b_{1} x+b_{2} y$

Method of Least Square

$\min \varepsilon^{2}=\sum\left[z_{i}-\left(b_{0}+b_{1} x_{i}+b_{2} y_{i}\right)\right]^{2}$
Solve the matrix using Gaussian Elimination

$$
\left[\begin{array}{ccc}
n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} y_{i} \\
\sum_{i}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} y_{i} \\
\sum_{i=1}^{n=} y_{i} & \sum_{i=1}^{n=} x_{i} y_{i} & \sum_{i=1}^{n} y_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{i} \\
b_{2}
\end{array}\right]\left[\begin{array}{c}
\sum_{i=1}^{n} z_{i} \\
\sum_{i=1}^{n} x_{i} z_{i} \\
\sum_{i=1}^{n} y_{i} \\
z_{i}
\end{array}\right]
$$

Determination of Dip Angle β based on Unit Vector

$k \cdot n=|k||n| \cos \beta$

$$
\beta=\cos ^{-1}\left|\frac{1}{\sqrt{b_{1}^{2}+b_{2}^{2}+1}}\right|
$$

Determination of Dip Direction α based on Unit Vector
$j \cdot n_{h}=|j|\left|n_{h}\right| \cos \alpha$

$\alpha=\cos ^{-1}\left|\frac{b_{2}}{\sqrt{b_{1}^{2}+b_{2}^{2}}}\right|$

Determination of Dip Direction α relative to North

- Normal vector could rest on any of the 4 quadrants
- Determine the direction cosine of the normal vector

$$
\cos \lambda=\frac{b_{1}}{ \pm \sqrt{b_{1}^{2}+b_{2}^{2}+1^{2}}}
$$

$$
\cos \delta=\frac{b_{2}}{ \pm \sqrt{b_{1}^{2}+b_{2}^{2}+1^{2}}}
$$

$$
\cos \psi=\frac{-1}{ \pm \sqrt{b_{1}^{2}+b_{2}^{2}+1^{2}}}
$$

Correlation Coefficient, R^{2}, to determine how close a best-fit plane to the selected points
$\mathrm{R}^{2}=\frac{\left[\sum\left(z_{i}-\bar{z}\right)\left(\hat{z}_{i}-\overline{\hat{z}}\right)\right]^{2}}{\sum\left(z_{i}-\bar{z}\right)^{2} \sum\left(\hat{z}_{i}-\overline{\hat{z}}\right)^{2}}$
$\hat{z}_{i}=b_{0}+b_{1}\left(x_{i}-\bar{x}\right)+b_{2}\left(y_{i}-\bar{y}\right)$

Summary:

1. Overcome the limitation of photo texture offered in 3D laser scanning program.
2. The use of 3D graphical software can merge more than 1 photo accurately onto a mesh, thus overcomes the limitation of GIS program.
3. Results show a good comparison between measurements from compass and calculation based on linear regression of a plane. Expect 3-5 degree difference due to scaling effect.
4. Mapping of rock joint plane orientation can be accurately calculated without accessing the rock face.
5. Improving efficiency, cost and safety to mapping practice.
6. Methodology commonly applicable to other engineering applications, e.g., asbuilt drawing, 3D CAD modeling, archeology, restoration of history buildings etc.
