

Software available for Integration of Scanning and Photogrammetric Process:

- 1. Cyclone
- 2. Arc GIS
- 3. Reverse Engineering (Reconstructor)
- 4. Rock Fracture Mapping (HKU)
- 5. AutoCAD 3D Studio Max

					Compa measur Dip An Direction	risons of ed and c igle and on	f alculated Dip	
Anchor	Face	Multivariat	Multivariate Regression		d Compass	Difference		
Block	(b)	Analysis based on Point Cloud		(d)	(c)=(d)-(c)		
(a)			(c)				(c)=[(d)-(c)]/(d)*100%	
		Dip Angle	Dip Direction	Dip Angle	Dip Direction	Dip Angle	Dip Direction	
В	1	73.0°	358.8°	74°	359°	1.0° 1.4%	0.2° 0.1%	
	2	53.7°	0.0°	52°	359°	-1.7° -3.3%	-1.0° 0.3%	
	3	73.4°	340.4°	74°	339°	0.6° 0.8%	-1.4° -0.4%	
	4	89.2°	359.0°	89°	359°	-0.2° -0.2%	0.0° 0.0%	
	5	72.7°	18,7°	74°	19°	1.3° 1.8%	0.3° 1.6%	
()	(1)	69.8°	0.0°	71°	0°	1.2°	0.0°	
	2	51.8°	359.7°	51°	0°	-0.8°	0.3°	
	3	71.3°	339.8°	72°	339°	0.7°	-0.8°	

	From compass		From Linear Regr	ession	Difference (Compass-Linear	
lane	Dip Direction	Dip Angle	Dip Direction	Dip Angle	Dip Direction	Dip Angle
	Degree	Degree	Degree	Degree	Degree	Degree
1	24	82	21	81	3	1
2	9	85	7	83	2	2
3	344	75	340	71	4	4
4	356	6	355	7	1	-1
5	349	15	345	14	4	1
					Abou differ scale	t 3 degree ences due effect

Computation of Dip Angle and Dip Direction

Equation of a best-fit plane

 $z = b_0 + b_1 x + b_2 y$

Method of Least Square

 $\min \varepsilon^2 = \sum [z_i - (b_0 + b_1 x_i + b_2 y_i)]^2$

Solve the matrix using Gaussian Elimination

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} y_i & \sum_{i=1}^{n} x_i x_i & \sum_{i=1}^{n} y_i^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} x_i z_i \\ b_2 \end{bmatrix} = \begin{bmatrix} x_i z_i \\ x_i z_i \\ \sum_{i=1}^{n} y_i z_i \end{bmatrix}$$

B E	Determination of Dip Direction α relative to North						
B	Conditions	Normal Vector	Quadrant	Dip			
Elevation	$\cos \lambda \ge 0$, $\cos \delta \ge 0$ and $\cos \psi \ge 0$	Upward	North East	a			
	$\cos \lambda \ge 0$, $\cos \delta < 0$ and $\cos \psi \ge 0$	Upward	South East	180°-α			
North	$\cos \lambda < 0, \cos \delta < 0 \text{ and } \cos \psi \ge 0$	Upward	South West	180'+ α			
East	$\cos \lambda < 0, \ \cos \delta \ge 0 \ and \ \cos \psi \ge 0$	Upward	North West	360°- α			
	$\cos \lambda \ge 0, \ \cos \delta \ge 0 \ and \ \cos \psi < 0$	Downward	North East	a			
	$\cos \lambda \ge 0, \ \cos \delta < 0 \ and \ \cos \psi < 0$	Downward	South East	180'- α			
	$\cos \lambda < 0, \cos \delta < 0$ and $\cos \psi < 0$	Downward	South West	180'+ α			
Feng (2004)	$\cos \lambda < 0, \ \cos \delta \ge 0 \ and \ \cos \psi < 0$	Downward	North West	360°- α			

Correlation Coefficient, R², to determine how close a best-fit plane to the selected points

$$R^{2} = \frac{\left[\sum(z_{i} - \overline{z})(\hat{z}_{i} - \overline{z})\right]^{2}}{\sum(z_{i} - \overline{z})^{2}\sum(\hat{z}_{i} - \overline{z})^{2}}$$
$$\hat{z}_{i} = b_{0} + b_{1}\left(x_{i} - \overline{x}\right) + b_{2}\left(y_{i} - \overline{y}\right)$$

Summary:

- 1. Overcome the limitation of photo texture offered in 3D laser scanning program.
- The use of 3D graphical software can merge more than 1 photo accurately onto a mesh, thus overcomes the limitation of GIS program.
- Results show a good comparison between measurements from compass and calculation based on linear regression of a plane. Expect 3-5 degree difference due to scaling effect.
- Mapping of rock joint plane orientation can be accurately calculated without accessing the rock face.
- 5. Improving efficiency, cost and safety to mapping practice.
- Methodology commonly applicable to other engineering applications, e.g., asbuilt drawing, 3D CAD modeling, archeology, restoration of history buildings etc.