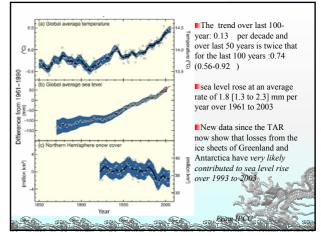
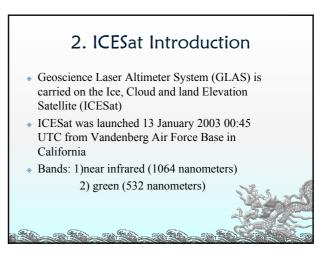
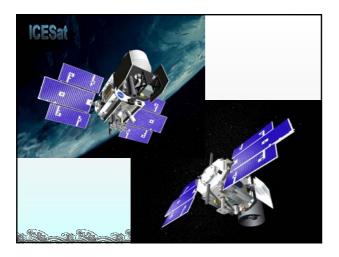
Crossover analysis of Lambert-Amery Ice Shelf drainage basin for elevation changes using ICESat GLAS data

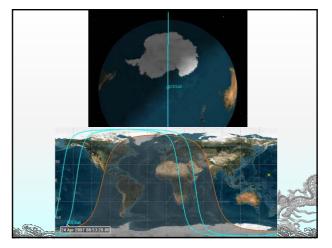

Shen Qiang, E Dongchen, Jin Yinlong


Chinese Antarctic Center of Surveying and Mapp, SGG, Wuhan University, P. R. CHINA, 430079

16, May 2007




- I Background
- 2 ICESat introduction
- 3 LAS characteristics
- 4 Detection Methods
- 5 Results Analysis
- 6 Conclusions



able SPM-1. C	Observed rate of sea level rise and estimated o	ontributions from different sources	(5.5, Table 5.3	
		Rate of sea level rise (mm per year)		
So	urce of sea level rise	1961 - 2003	1993 - 2003	
Th	ermal expansion	0.42 ± 0.12	1.6 ± 0.5	
Gu	aciers and ice caps	0.50 ± 0.18	0.77±0.22	
Gn	eenland ice sheet	0.05 ± 0.12	0.21 ± 0.07	
Ani	tarctic ice sheet	0.14 ± 0.41	0.21 ± 0.35	
	m of individual climate htributions to sea level rise	1.1±0.5	2.8 ± 0.7	
Ob	served total sea level rise	1.8 ± 0.5*	3.1 ± 0.7°	
(0)	ference beerved minus sum of estimated climate htributions)	0.7 ± 0.7	0.3 ± 1.0	
Table note:	nilouons)			

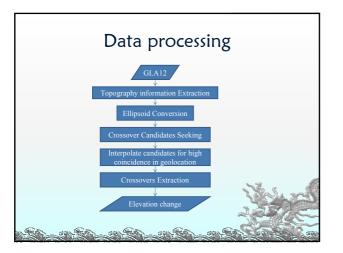
GLAS Science Objectives

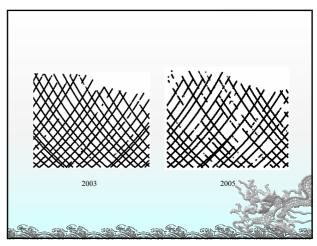
- ice-sheet topography and associated temporal changes
- cloud and atmospheric properties
- along-track topography

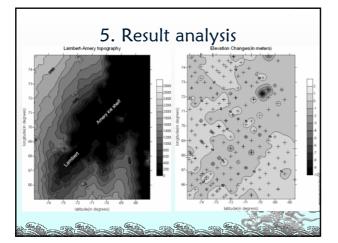
intrinsic precision of better than 10 cm associated temporal change at the centimeter per year level

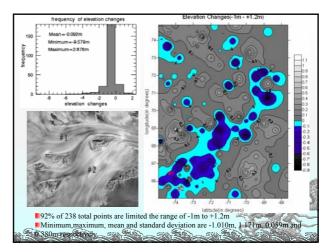
Advantages

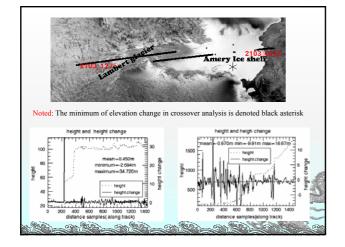
3. LAS Characteristics


- LAS situates 67-82°S and 40-95°E, the largest glacier/ice shelf system in east Antarctica.
- LAS's area is about 1/10 of all of Antarctica and the length of ice tongue is about 1/60 of entire Antarctic coastline, so the velocity of ice streams in the front of Amery ice shelf is faster than the other areas along the Antarctic coastline (Wang Qianghua, 2002)


4.Detection Method Direct comparison of surface profiles Crossovers analysis


 183-day ground track repeat cycle <u>vields 15</u> <u>km track spacing at the equator and 2.5 km at</u> <u>80 degrees latitude</u>


Code name	Start Date	End Date	Release Version	Num. of Revolutions	Code of laser	Num. of files
Data 1	10/13/2003	11/09/2003	Release-26	541	Laser	38
Data2	10/21/2005	11/24/2005	Release-28	493	Laser 3D	34
					1	Z. x
						NOU Y


Data sources

6.Conclusions

- The LAS are the negative elevation change (-0.6-0m) in comparison of two datasets acquired in 2003 and 2005 year respectively
- $\,$ The other ice sheets are positive elevation change in the range of 0~0.4m
- The value of mass balance can't be made certain in direct comparison because the uncertainty of detection may be exceed largely the rates of elevation change in the two periods

