FIG Working Week 2007, Hong Kong
Monitoring Slope Failure at Kadoorie Agricultural Research Centre with a 3D Laser Scanner

Andrew Wong, Jacky Ng Leica
Geosystems

Peica

Alan K. L. Kwong Department of Civil
Engineering, The
University of
Hong Kong

Background

- A loosely compacted fill slope with an angle of 33° was constructed at the

Kadoorie Agricultural Research Centre of The University of Hong Kong

- The slope was installed with soil nails and brought to failure by subjecting to surcharge at the slope crest, rise in groundwater table and precipitation
- Heavy instrumentation comprised in-place inclinometer, vibrating wire piezometers, vibrating wire extensometer, earth pressure cell and strain gauges along soil nails to study the failure mechanism and behavior of the soil nails in loosely compacted fill slope
- Slope Height $=4.75 \mathrm{~m}$ and Width $=9 \mathrm{~m}$
- Constructed by end-tipping method and resulted in a loose state with an initial dry density of $\mathbf{7 0 \%}$ of the maximum dry density.

This paper focuses on the use of 3D laser scanner in capturing the formation of cracks and surface movement during the failure

HDS3000 Complete System

A typical complete system includes...
-Scan Head
-Tribrach
-Tripod
-Ethernet and Power cable
-2 Batteries (1 shown)
-Laptop
-Shipping cases (1
 pictured)

10
Large volume of space per scan
HDS3000: Dual-Window Design

Typical scan for 1 million point: 20 minutes Leica

Overall View at 0930 hr

Close-up View at 0930 hr

Tie Points for Registration
Section A-A
16

Section A-A (Movement at Upper Soil Nail Head)
19

Section C-C
20

Section C-C (Close-up View above Lower Soil Nail Head)
21

Section C-C (Close-up View of Lower Soil Nail Head) 22

25

Wash Out Observed at 1910 hr (width $=0.402 \mathrm{~m}$, length $=2.412 \mathrm{~m}$) ${ }^{26}$

Wash Out Scar at 1910 hr (maximum depth $=0.338 \mathrm{~m}$)

Close-up View of GPS (movement between 1910hr and 1930hr)

29

Merging Images from Scan on 23 Nov. 02 (1930hr-after toppled) and 04 Dec. 30 02 (detailed scan at toe)

Conclusions:

- Slope movement can be monitored using the latest 3D laser scanning technology
- By overlapping the point cloud generated from the scanner at different time intervals, the surface movement of the slope can be accurately recorded without the need of physically accessing the slope surface
- Can safely and quickly record the movement and dimension of washout and cracks, advantages over conventional survey method when the slope reaches failure
- Scanner reading agrees very well with that from conventional inclinometer reading at the surface
- Point cloud can be easily modeled into geometrical shape for further rendering

