

Outline

The current Israeli cadastre
 Analytical cadastre & Precise LIS
 Previous research
 Mathematical & cadastral transformations
 Pilot project
 Cadastre and real estate markets
 Conclusions and summary

The Current Israeli Cadastre > Torrens method - Registration of titles > 80 years of Cadastral mapping (since 1926) \$ 21,000 sq. kilometers \$ ~15,000 cadastral blocks \$ ~1,000,000 cadastral blocks \$ ~1,000,000 cadastral parcels \$ ~4.5% of the country still not cadastral mapped & registered > Measurements of boundaries are kept on "paper" \$ Field books & field sheets \$ Evidence for the statutory validity of land boundaries

Characteris	stics of the Israeli Cada	stre
 Scale of 1:1 70% of the 	250 to 1:2500 e existing maps in Israel	
 Chain surve 65% of the 	eying e existing blocks in Israel	
 Blocks were 60% of all 	e manually plotted cadastral maps in Israel	
 ≻ Surveying r ⇒ Positional 	egulations I accuracy: less than 10 cm.	
FIG Working Week 2007	STRATEGIC INTEGRATION OF SURVEYING SERVICES	Hong Kong, 13-17 May 2007

Problems a	nd Difficulties	
> Inherent cor cadastral ma	ntradictions and inaccuracies aterial	in the existing
Delays in tra updating the	acking and measuring the cha e cadastral maps	nges and
> Urban and r non-precise	egional planning is carried ou graphical cadastre	t based on the
> Complexity	in preparing the mutation plan	ns
Very long pi land re-parc	rocesses of registration the overlation)	wnerships (after
FIG 14		

Outline

Solution: Analytical Cadastre & Precise LIS

> The solution: replacing the current cadastre which has a "graphic nature" with an analytical cadastre/precise LIS

> Analytical cadastre/precise LIS

- ⇒ The location of each entity is unequivocally determined precisely by the state plane coordinate system
- It will constitute a spatial information system defining the statutory land division
- > Obtaining the digital mapping data is the bottleneck in the process of establishing the analytical cadastre

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Hong Kong, 13-17 May 200

Analytical Cadastre & Precise LIS

> Several basic sources are available:

- ⇒ Field measurements of land boundaries
- Digitizing (scanning) existing maps
- Processing the existing surveying data

> Resurveying all land boundaries is a radical solution

- Restoring the boundaries as-is and measuring the restored boundaries is an impractical solution
- ⇒ It constitutes a tremendous effort
- It requires a huge number of professional surveyors, technicians, etc. (probably unavailable)

STRATEGIC INTEGRATION OF SURVEYI

Analytical Cadastre & Precise LIS (cont. 1)

Digitizing (scanning) existing maps

- A simple process, non expensive and a fast way of obtaining digital data
- SOI (Survey of Israel) digitized/scanned during the late 1990s the 15,000 cadastral block sheets and established a continuous LIS database
- This cadastral database has a graphical nature, is not accurate enough, and has no legal statutory validity
- It serves mainly managerial purposes and not cadastral applications

Analytical Cadastre & Precise LIS (cont. 2)

Outline

- > The current Israeli cadastre
- > Analytical cadastre & Precise LIS
- Previous research
- > Mathematical & cadastral transformations

STRATEGIC INTEGRATION OF SURVEYING SERVICES

- > Pilot project
- > Cadastre and real estate markets
- > Conclusions and summary

STRATEGIC INTEGRATION OF SURVEYING SERVICES

g Kong, 13-17 May 2007 11

Hong Kong, 13-17 May 2007

Hong Kong, 13-17 May

Previous Research

- Developing a precise and accurate analytical cadastre is an ongoing issue for the last 10-15 years
- Previous research has been focusing on particular issues; not on from a countrywide viewpoint
- > One of the solutions for urban (unchanged) areas:
 - New measurements of buildings as an anchor objects
 - New computation of original field books
 - A geometrical and cadastral adjustment process
 - → Accuracy of the adjusted coordinates better than 0.10 meter

Hong Kong 13-17 M

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Previous Research (cont.)

- > One of the solutions for rural/suburban (redeveloped and/or reconstructed) areas:
 - ⇒ Is based on photogrammetric means
 - Using aerial photographs from previous periods enables to remeasure the "vanished" features
 - ⇒ A "virtual journey in time" by geo-referencing old and new sets of aerial photographs enables reconstructing the original cadastral reality.
 - \rightarrow The accuracy of the coordinates of the cadastral parcel corners was in the range of 0.10 up to 0.30 meters

Hong Kong, 13-17 May 2007

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Outline

- > The current Israeli cadastre
- > Analytical cadastre & Precise LIS
- > Previous research
- > Mathematical & cadastral transformations
- Pilot project
- > Cadastre and real estate markets
- > Conclusions and summary

Transformations > Transformations – a tool for converting analogue cadastral maps to digital cadastral data ◦ Global transformations - a mathematical/geometrical model with various degrees of freedom · A rigid-body transformation - three degrees of freedom Conformal – four degrees of freedom Affine – six degrees of freedom · Polynomial based transformations - with higher degrees of freedom Local transformations - a mathematical (usually a non geometrical) model · Rubber sheeting mechanism (many versions) Constrained and non Constrained Delauny-Triangulation · Methods based on finite elements STRATEGIC INTEGRATION OF Hong Kong, 13-17 May

Transformations (cont.)

- > Good results through global or local transformations may be achieved only if
 - The analogue and the digital datasets are identical and homogeneous in their accuracy characteristics
 - $_{\odot}~$ Have linear distortions behavior throughout the data sets
- In many cases of the cadastre these assumptions are not fully justified
- Applying a non-supervised global/local mathematical transformations on multi-patches cadastral datasets will probably fails (unsatisfied and non-accurate results)

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Hong Kong, 13-17 May 2007 1

Outline

- > The current Israeli cadastre
- > Analytical cadastre & Precise LIS
- Previous research
- > Mathematical & cadastral transformations

STRATEGIC INTEGRATION OF SURVEYING SERVICES

- > Pilot project
- > Cadastre and real estate markets
- > Conclusions and summary

Pilot Project

> The Survey of Israel initiated (2006) a pilot project

- Composed of 60 cadastral blocks located along the Mediterranean seashore in 4 different zones
- We were involved in the pilot project of one of these zones
- □ Located in the center of Israel covering an area of ~ 5.5 km in the south-north direction and less than 1 km in the east-west direction
 - The area is covered by 15 cadastral blocks and about 200 mutation plans
 - The maps (cadastral blocks and mutation plans) were measured during a period of several decades in different measuring technologies
 - They were kept as analogue documents (field books and field sheets) They were based on three different grid systems - local, old (Cassini-
 - Soldner) and New (Israeli Transverse Mercator) systems

Measuring and Processing

> Processing stages:

- A very careful field study has been carried out
- The authentic data have been searched for, identified and measured (in the new 2005 GPS based Israel Grid)
- The average number of polygon points, border points and original details per cadastral block was about 60-70 points
- All field books have been recalculated
 - For all cadastral blocks (whenever they have been found)
 - · For all mutation plans (whenever they have been found)
- The current borders of the cadastral blocks have been measured STRATEGIC INTEGRATION OF SURVEYING SERVICES

Hong Kong, 13-17 May 2

Measuring and Processing (cont.)

> First processing stage – a mathematical approach:

- The cadastral borders has been transformed to new 2005 Israeli Grid
- Entire cadastral blocks were processed based on all authentic and identified control points
- Applying non-supervised standard mathematical transformation models
- The numerical results were disappointing and unacceptable
- Residuals of the control points were in the range of many decimeters (up to and above than 1 meter)

Global Mathematical Transformations (1) control and border points - new vs. old measurements 7043 7115 7120 7138 7142 7143 7145 7146 7230 project points 12 20 3 7 6 8 10 14 3 83

	DX									
min	-0.54	-0.34	-0.07	-0.63	-0.27	-0.02	-0.01	0.10	0.09	-0.63
max	0.42	0.32	0.33	0.17	0.55	0.43	0.45	0.32	0.11	0.55
average	0.09	0.12	0.09	-0.09	0.10	0.13	0.23	0.21	0.10	0.13
median	0.14	0.14	0.02	0.00	0.09	0.12	0.20	0.20	0.10	0.14
std	0.25	0.16	0.21	0.26	0.26	0.14	0.14	0.07	0.01	0.19
	DY									
min	-0.32	-0.23	0.02	-0.07	-0.12	-0.26	-0.53	-0.40	-0.21	-0.53
max	0.16	0.54	0.10	0.34	0.02	0.27	0.14	0.31	0.07	0.54
average	-0.12	-0.08	0.06	0.17	-0.06	-0.04	-0.13	-0.05	-0.09	-0.05
median	-0.14	-0.14	0.07	0.06	-0.06	-0.04	-0.05	-0.05	-0.12	-0.06
std	0.15	0.19	0.04	0.16	0.06	0.18	0.23	0.17	0.14	0.18

Measuring and Processing (cont.)

> A careful analysis of the initial results pointed out:

- A heterogeneous scattering of the residuals within the block
- Patches of homogeneous behavior of these residuals
- A significant correlation between these patches and the original mutation plans
- → A "cadastral mechanism" of transformations has been adopted

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Measuring and Processing (cont.)

> Meaning of a "cadastral mechanism":

- $\ensuremath{\circ}$ The cadastral information has been subdivided into its original "patches"
- Each patch was an original single surveying project
- Each one of these patches has been transformed separately
- o It was based on the authentic control points
- Using the simplest (rigid-body) transformation mechanism

→ Excellent results

- →Deviations of few centimeters between adjacent mutation plans within the same cadastral block
- →Typically deviations in the range of 1-2 decimeters between adjacent cadastral blocks

Outline

- > The current Israeli cadastre
- > Analytical cadastre & Precise LIS
- Previous research
- > Mathematical & cadastral transformations
- > A pilot project
- > Cadastre and real estate markets
- Conclusions and summary

Cadastre and Real Estate Markets

> Establishing a precise coordinate LIS has major effects:

- Measuring and surveying processes
 - Saves multiple measurement of the same land area over different
 points in time and for different uses
 - Economizes the per measurement cost (no need to repeatedly conduct the entire tedious measurement process)
- Planning and Land Registration processes

STRATEGIC INTEGRATION OF SURVEY

- Accelerates the execution of land use conversion and alterations in planning programs
- Decreases the time cycle needed for a re-parcelation to be implemented and new ownerships to be registered
- Incorporates a fairness effect: the objective measurement mechanism prevents from the more powerful party to exercise its power in case of dispute

Cadastre and Real Estate Markets (cont.)

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Hong Kong, 13-17 May 2

Hong Kong, 13-17 May 2

- Modern Real Estate Markets
 - Allows a reliable land valuation
 - Accelerates the execution of real estate transactions
 - Decreases the uncertainty that accompanies real estate transactions
 - Prevents the transaction costs that correspond to disputes and lawsuits between landowners, stakeholders, and other potential conflicting interests
 - Reduces the involved transaction costs and allows a more efficient decision making

Outline

- > The current Israeli cadastre
- > Analytical cadastre & Precise LIS
- > Previous research
- > Mathematical & cadastral transformations

STRATEGIC INTEGRATION OF SURVEYING SERVICES

- > A pilot project
- > Cadastre and real estate markets
- > Conclusions and summary

Conclusions and Summary (cont.)

- Inaccuracies are mainly the result of merging separate patches (separate cadastral/mutation plans) via mathematical unsupervised transformations
- In blocks that have many mutation plans, each mutation plan must be examined by its self and being transformed based on cadastral (and not mathematical) mechanism
- Until achieving a comprehensive and continuous and precise analytical cadastre, we still have to utilize past border points for carrying out cadastral projects in the present
- An accuracy of a precise LIS at the level of ~1-2 decimeters is a realistic goal

FIG Working Week 2007

STRATEGIC INTEGRATION OF SURVEYING SERVICES

Hong Kong, 13-17 May 2007 31

