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Abstract. This article extends the classical 

concept of geodetic network adjustment by 

introducing a new two-step analysis method, 

starting with a quality assessment of the original 

input quantities.  

In the first step the original readings and 

possible influence factors for pre-processing the 

raw data are analysed using an uncertainty 

modelling according to GUM (Guidelines to the 

Expression of Uncertainty in Measurements). This 

approach is well established in metrology, but 

rarely adapted within Geodesy.  

As second step Monte-Carlo-Simulations (MC-

simulations) are carried out. To perform these 

simulations, possible realisations of the raw 

readings and the influencing factors are generated, 

using assigned probability distributions for all 

variables and the established concept of pseudo-

random number generators. Final result is a point 

cloud which represents the uncertainty of the 

estimated coordinates; a confidence region can be 

assigned to these points clouds, as well. 

This concept may replace the common 

variance-covariance propagation and the use of 

the covariance matrix Σxx of the parameter 

vector x for an estimation of the achieved 

precision. It allows a new way for quality 

assessment of precision in accordance with the 

GUM concept for uncertainty modelling. 

As practical example the local tie network in 

“Metsähovi Fundamental Station”, Finland is 

used, where classical geodetic observations are 

combined with GNSS data.  

Keywords. GUM analysis, geodetic network 

adjustment, quality assessment, Monte-Carlo 

Simulations, local tie  

1 Uncertainty according to GUM  

1.1 Concept of GUM (Guidelines to the 
expression of uncertainty in 
measurements) 

Because no measurement is exact, a measured 

value, i.e. the result of a real measurement, is only 

complete with a quantity representing the 

associated uncertainty. In statistics here the 

dispersion of the variable is introduced, classical 

numerical quantities are variance or standard 

deviation.  

The traditional statistical concept to carry out 

repeated independent (!) observations and to 

compute the dispersion of the resulting measuring 

quantity does not cover the complexity of the 

measuring processes, which we find today. Due to 

the advent and rapid developments of electronic 

sensors and - in general - low knowledge on 

internal measuring processes and pre-set 

computational steps it is not sufficient to analyse 

repeated observations to get an adequate measure 

for the dispersion of measurements! The 

measurement action itself often is identical with 

pushing a button and therefore these 

“observations” do not contain any information on 

the real variability of the complete measuring 

process. Aside, often the variability of 

environmental conditions is not taken into 

account, i.e. important influencing parameters are 

not considered. 

Being aware of these deficiencies, on initiative 

of the BIHM (BIPM 1987) a group of 

international experts of metrology started to 

develop a new concept to better assess the 

complete uncertainty of measurements. As result 

the “Guide to the Expression of Uncertainty in 

Measurements”, abbreviated by GUM, was 

developed, which nowadays is the international 

standard (DIN V ENV 13005, ISO 1995) in 

metrology and beyond. The GUM allows to 

compute uncertainty quantities for each measuring 
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sensor or system; uncertainty is a non-negative 

parameters characterizing the dispersion of a value 

attributed to a measuring quantity and by this 

nowadays uncertainty is considered to be the 

adequate precision parameter.  

Of course, this GUM concept is studied and 

discussed within geodetic literature, see e.g. 

Hennes/Heister (2007), Hennes (2013), 

Kutterer/Schön (2004) and Niemeier (2008). But 

these discussions are mainly limited to uncertainty 

assessment for measurements, only. Due to the 

knowledge of the authors the here emphasised 

network approach is not considered yet. 

As consequence GUM introduces a unified 

method for the evaluation of these uncertainty 

quantities (Sommer/Siebert 2004, Weise /Wöger 

1999). The uncertainty according to GUM has a 

probabilistic basis, but tries to include all 

knowledge on factors influencing the quantity of 

interest. Within GUM, two types of influence 

factors are considered: 

Type A: Random dispersion of measurements 

- Common statistical approaches, mainly 

Gaussian distribution.  

- Values inferred from repeated measured 

values (internal accuracy?). 
Type B: External influences, systematic effects, 

approximations, etc.  

- What are influencing factors? 

- Quantification: Variability within specified 

interval [a, b]  

- Probability distribution: Assume type of 

distribution, mostly uniform, rectangular or 

Gaussian 

This concept allows it to consider the classical 

random effects (Type A), which might influence 

the measuring results, i.e. the established 

approach.  

But additionally it allows to include all relevant 

additional influences (Type B), e.g. external effect 

(e.g. environment and observer) and remaining 

systematic errors (e.g. due to measuring 

procedure, calibration errors or instrumental 

effects). Even approximations in a computational 

formula have to be and can be considered here.  

1.2 Approach to perform a GUM analysis 

From the view point of classical error analysis 

the introduction of GUM corresponds to a radical 

”paradigm change”, which leads to several new 

subtasks, which have to be solved to be able to 

perform an uncertainty analysis according to 

GUM:  

1.2.1 Modeling the (pre)-processing chain 

As describes in the GUM documents, e.g. (DIN 

1999, § 4.1), it is necessary to model the complete 

process to derive the „final“ result Y out of the 

raw readings. Here all and really all input 

quantities X1, X2, X3… have to be included, which 

influence the value of the raw readings (starting 

quantities). As this model contains an algorithm, 

how the raw readings are changed whenever one 

input quantity is changed, this model is named 

“carrier of information” for GUM analysis. 

Mathematically this model can be described as - 

often nonlinear - function  

𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛)  (1.1) 

To establish this function in a complete way is 

one of the most difficult subtasks for deriving the 

uncertainty of measurements. A very profound 

understanding of the sensor, the measuring task, 

the data processing and the possible influences are 

mandatory. Here it has to be taken into account, 

that the purpose is to provide information about 

the quantity of interest - the measurand. No 

definitive theory can be applied, just some 

recommendations are available (see e.g. Kessel 

2001, Sommer und Siebert 2004).  

For distance measurements, one of the basic 

geodetic techniques, the computational model 

according to Eq. (1.1) is depicted in Figure 2. 

Here not the complete mathematical formulas are 

Figure 1 GUM concepts for modelling input 

quantities of Type A and Type B (after 

Sommer/Siebert 2004) 



 

listed, just a description of the specific 

computational steps are given.  

The “final” distance value, i.e. the numerical 

result after all these pre-processing steps, is used 

as input quantity for a network adjustment. Now it 

is necessary to assign a dispersion or an 

uncertainty value to this quantity. Within the 

classical approach of network adjustment (e.g. 

Niemeier 2008) just rough estimates for the 

dispersion, given as variances and covariances, 

will be introduced. Only the GUM approach 

allows to include uncertainties of all input 

variables and influencing factors which are used 

during the complete pre-processing stages. This 

will be explained in the following sections. 

1.2.2 Assessment of a statistical 
distribution to the pre-processing 
variables 

For all original readings and influencing 

quantities in Eq. (1.1) now statistical distributions 

with expectations and dispersion values have to be 

assigned: 

For Type A quantities the common probability 

functions with Gaussian or Normal distribution 

(defined by expectation µ and variance σ2) are 

used, following the classical statistical concepts, 

see Fig. 1.  Here all the classical methods for 

estimation of variances can be applied, i.e. the 

analysis of real measurements from own or other 

experiences, data sheet information, etc.  

For influences of Type B, which can be 

summed up as external influences, remaining 

systematic effects and insufficient 

approximations, according e.g. to Weise and 

Wöger (1999) and Sivia (1996) it seems to be 

justified to introduce probability functions as well. 

But the individual assignment of an adequate 

statistical distribution is much more complex as 

here as statistical concepts aside the classical 

normal distribution, uniform and triangle 

distributions are allowed, as well, see Figure 3. 

and Table 1. 

For each distribution the expected mean value 

and its dispersion have to be introduced, i.e. these 

quantities have to be pre-selected as starting 

values for a GUM analysis! The task for the 

engineer is to estimate e.g. the variability of the 

effective temperature during the measuring period, 

to assess a quantity to the centering quality, to 

evaluate the validity of the calibration parameters, 

etc.  

A simple example for this first step a GUM 

analysis is given in Table 1 for geodetic distance 

measurements. In the extended numerical example 

in section 4 the assessment of statistical 

distributions to all influencing parameters is 

performed for a simple 3D-local geodetic network 

with total station, levelling and GNSS 

observations. These still simplified estimated 

probability functions are used in the same section 

for a Monte-Carlo (MC) simulation of the local tie 

network of the geodetic fundamental station 

Metsähovi, Finland. 

 

Table 1: Type A and Type B influence factors, 

their probability distribution and variability range 

for typical geodetic observations 

Influence factors  
 

Distribu
tion 

Examples  

 
 
T 
y 
p 
e 
 
A 

Total station   

- directions normal 𝜎ℎ= 0,2 
mgon 

- vertical angles normal 𝜎𝑣= 0,3 
mgon 

- slope distances normal 𝜎𝑑= 0,6 
mm+1ppm 

Levelling   

- height differences normal 𝜎∆ℎ= 0,6 

mm/√ km 

GNSS   

- baselines ∆𝑥, ∆𝑦, ∆𝑧 normal 𝜎∆ = 2 mm 

 
 
T 
y 
p
e 
 
 
B 

Pillar und centering   

- centering direction uniform [0..360°] 

- centering offset triangle [0..0,1 mm] 

- Target centre definition  uniform 𝜎𝑡 = 0,1mm 

Instrument and target 
height 

uniform [0..0,2 mm] 
 

Calibration parameters   

- additional constant normal 𝜎𝐴 = 0,5mm 

- scale factor normal 𝜎𝑠 = 0,2 
ppm 

Atmospheric parameters   

- temperature uniform [0.1 K] 

- air pressure uniform [0.1 mbar] 

- humidity uniform [0..5%] 

raw reading  

calibration parameters 

meteorological corrections 

Centering and 
levelling 

instrument 

„final“ distance value 

Temp. pressure;  

Figure 2 Pre-processing chain for the derivation 

of a “final” value for distance measurements 



 

For the here used basic geodetic observations in 

Table 1 the main influencing factors with 

corresponding probability distributions and 

domain of variability are given. Missing are 

additional computational influences, according to 

the required reduction to a reference height, 

possible personal effects, due to observer resp. 

team, and further environmental influences, as bad 

weather, strong insolation, etc.  

The selection of the distribution type and the 

variability range are a preliminary selection, only. 

At least for GNSS a much more detailed analysis 

of all influencing factors has to be performed, 

which is an actual task for scientists from the 

Finish Geodetic Institute. 

1.3 Derivation of uncertainty quantities 

1.3.1 Combining the individual influences 

Within the classical GUM approach the 

combination of the different influences is done by 

a straight forward application of the well-known 

law of variance propagation. In Figure 3 on the 

left hand side the different types of probability 

distributions are depicted, i.e. normal, uniform and 

triangle distribution, where to each type of 

distribution several pre-processing variables can 

be assigned. On the right hand side the principle 

for combining the different uncertainties uxi of 

Type A and Type B are visualized, using the 

classical concept of variance propagation for 

uncorrelated quantities.  

The uncertainty for the function y, see Eq. 

(1.1), is numerically given in Eq. (1.2), where 

instead of uncertainties uxi explicitly the 

uncertainties of Type A (uAi) and Type B (uBi) are 

given to show that here both types of influence 

factors are combined, applying the law of variance 

propagation: 

 

𝑢𝑦 =  √𝑢𝐴1
2 + ⋯ + 𝑢𝐴𝑛

2 + 𝑢𝐵1
2 + ⋯ + 𝑢𝐵𝑚

2   (1.2) 

 

Within GUM two extensions are foreseen, 

which corresponds – to a certain extend – to 

classical statistical approaches and can be 

interpreted as contribution to classical thinking: 

- One can introduce the extended uncertainty, 

defined as 

𝑈 = 𝑘𝑢𝐶  
 

 U is considered to content the majority of all 

values, which are probable as measuring 

results. Often k= 2 is used, what would 

correspond to a 95%-confidence interval, if 

we would compare it to normal distributed 

quantities. 

- To account for not considered unknown 

influence factors, an additional uncertainty uu
2 

can be introduced, what leads to the complete 

uncertainty  

𝑢𝐼𝐼 = √𝑢2 + 𝑢𝑢
2  

and finally the extended complete uncertainty 

𝑈𝐼𝐼 = 𝑘 ∙ 𝑢𝐼𝐼 

Criticism: 

Both extensions can be discussed critically, but 

this is outside the scope of this paper.  

The application of statistical distributions to 

Type B factors and the application of the variance 

propagation to get an uncertainty estimate uy are 

main contradictions to the GUM approach 

(Kutterer/Schön 2004). Of course, the assignment 

of a statistical distribution to a great variety of 

influence factors is a sensible step, and of course, 

the use of the law of variance propagation is a 

crude method, but it allows the community to 

continue their subsequent computations within 

established statistical concepts. 

1.3.2 More complex and/or combined 
systems 

The basic GUM concepts are restricted to one 

output quantity, i.e. an uncertainty assessment to a 

specific measurand, what can be the volume of a 

Figure 3 Concept of standard GUM 

approach to combine Type A and B influence 

parameters, using Gauss principle of 

variance propagation (Sommer/Siebert 

2004) 



 

vessel, the potential difference between the 

terminals of a battery, or a mass concentration. Of 

course, this output quantity, for which information 

is required, can be related to several input 

quantities. 

For many real problems is it not possible to 

measure the quantities of interest directly but they 

have to be calculated from a combination of 

several measurements, following an - often non-

linear - complex algorithm. If it comes to geodetic 

networks with several points, the objective is to 

determine the 1D, 2D or 3D coordinates of all 

network points. Here redundant and sometimes 

physically different observations (horizontal and 

vertical directions, slope distances, 3D coordinate 

differences, height differences, etc) are taken to 

estimate the ”best” results for the final coordinates 

of the network points and to improve the 

reliability of the system. To solve this 

overdetermined adjustment problem mainly the 

principle of least squares is applied (e.g. Niemeier 

2008). The main aspects for the funtional and 

stochastic model are given in section 1. 

To the knowlegde of the authors, the here 

discussed complex network adjustment process is 

not included in or covered by a GUM analysis, 

yet. In a classical geodetic adjustment only 

variance and covariance estimates for the final 

input quantities can be taken into account, see 

section 2.2. In theory these estimates take into 

account GUM Type A influences, only. But we 

are aware that often the quality of the pre-

processing steps and the environmental 

conditions, i.e. information of GUM Type B 

effects, are included - better to say ”added” - in an 

intuitive way into the variance estimates, at least 

by experienced observers. But these additional 

influencing effects cannot be considered in a 

rigorous way within the classical concept; this is 

possible only by the here proposed new approach.  

3 Monte - Carlo (MC) Approach 

3.1 Basic idea of MC simulations 

Monte Carlo (MC) methods characterise a class 

of computational algorithms to solve complex 

numerical problems by repeated random 

experiments (Kroese, Taimre, & Botev, 2011), i.e. 

“real” experiments are replicated or simulated 

within a computer. Monte Carlo simulations use 

repeated random sampling for input quantities to 

obtain the variability of numerical results. 

Typically the simulation runs many times (1000 – 

100,000 or more) in order to obtain a realistic or 

probabilistic distribution of the quantities of 

interest.  

Nowadays with efficient computers and good 

random number generators large samples are easy 

to generate. The variability of input quantities is 

computed by deterministic, pseudorandom 

sequences what makes it easy to evaluate and re-

run simulations. MC simulations allow to model 

phenomena with well-defined, significant 

uncertainties for all input variables.  

Here this MC approach will be applied to 

perform extended uncertainty modelling within 

geodetic data processing, especially network 

adjustments according to the GM model. It will be 

shown that this methodology allows it to combine 

MC simulations with a GUM analysis of the 

influencing factors in a rigorous way.  

The algorithm used here follows a particular 

pattern: 

 Define the functional relation between all 

input data and quantities of interest. 

 Define expectation and uncertainty domain 

for input data. 

 Generate input data randomly from a 

probability distribution over this domain. 

 Perform a deterministic computation with 

these inputs and get the quantities of interest. 

 Aggregate and analyze the computed 

quantities of interest. 

MC approaches are used since a long time in 

Geodesy. Dupraz and Niemeier (1979) applied 

this method to estimate the precision of a simple 

geodetic network with just 1000 samples. They 

could demonstrate the correlation between 

neighboring stations and by this the usefulness of 

a singular value decomposition for geodetic 

networks. Koch (2002) and Koch (2007) studied 

the applicability of MC simulations for regulation 

parameters and for outlier detection. 

3.2 Combination of MC simulations with 
GUM 

In the approach here the combination of the 

different influencing factors is done by Monte-

Carlo (MC) simulations, an approach, which 

overcomes at least the before mentioned criticism 

to use the classical variance propagation concept. 

The use MC-simulations in connection with GUM 



 

is propagated by the BIPM expert group since 

2004, see e.g. Bich (2008). 

The here proposed algorithm for an extended 

uncertainty assessment for geodetic network by 

rigorous combination of MC simulations with 

concepts of GUM is depicted in Figure 4. Starting 

point is the analysis of the complete pre-

processing chain for each observation Li, i.e. an 

analysis of all influencing factors of Type A and 

Type B, as given in Eq. (1.1), the “carrier of 

information” for GUM analyses. For all these 

influencing factors the most probable numerical 

value of this quantity, often a mean value or a real 

observation, a probability distribution function 

(according to Figure 3 an equal, triangle or normal 

distribution) and a variability domain (expressed 

by a variance) have to be selected. 

With an established pseudo random number 

generators (prn-generator) then in each MC-run 

one realization for each influence factor is 

computed and these values are combined within 

the pre-processing chain (see Eq. 1.1) to get one 

simulated input quantity Li for the adjustment 

approach. If these first steps according to GUM 

are performed for all input data of an adjustment, 

e.g. the distances, directions, height differences or 

coordinate differences, for each run the well-

known adjustment approach can start to estimate 

the adjustment parameters, what are in most 

applications the station coordinates.  

The preliminary step to get input quantities 

according to GUM does not influence the 

adjustment process itself, or – better to say – it is 

open for different coordinate systems and datum 

definitions, even for different adjustment concepts 

with arbitrary target functions.  

As result of each adjustment run one sample set 

of estimated parameters are computed. Within a 

MC simulation these computational steps are 

repeated m times (m between 1000 and 1 Million), 

resulting in m coordinate estimates for the 

position of each station.  

Final step is a visualization of these results, 

which forms a point cloud, as depicted in Figure 5 

for just one station in a 2D network. The 

variability of the estimated coordinates after MC 

simulation is a realistic picture of the uncertainty 

of these coordinate estimates according to GUM-

analysis of all influencing factors and the 

adjustment process. It is easy to compute 

confidence regions numerically within these 

points clouds, covering 68% or 95% of the total 

variability, as shown by the ellipses in Figure 5. 

Therefore by this MC approach confidence 

regions can be derived easily and subsequent 

analyses can be performed. 

One has to note that the probability distribution 

of this new uncertainty quantity has to be 

discussed. Basis are several influencing factors 

with different and in principle arbitrary probability 

distributions. At first glance one could apply the 

well-known central limit theorem (Cramer 1943), 

which state that as result of the combination of a 

large number of input quantities the result has a 

normal distribution. This would result in 

subsequent analyses, e.g. for deformation studies, 

Figure 5 2D-point-cloud, representing the 

different solutions for coordinate-estimates in a 

Monte-Carlo-Simulation. The ellipses are 

numerically derived regions for 68% and 95% 

confidence levels. 

 

Figure 4 GUM-conform input data generation for 

Monte-Carlo (MC)-simulation of a network adjust-

ment 



 

without any problems. But here more detailed 

studies have to be performed.  

4 Application to Local Tie Network 
”Metsähovi” in Finland 

4.1 What is a Local Tie? 

A “Local Tie Vector” can be defined an the 

3D-coordinate difference between instantaneous 

phase centres of different space based geodetic 

techniques, defined in the coordinate system of the 

space techniques. (e.g. Abbonondanza and Sarti 

2012). As intermediate step often the 3D-

coordinate difference between a specific space 

technique and physically defined reference 

stations are determined. The uncertainty 

requirement for local tie vectors is extremely high, 

within the global observing systems one to wants 

to achieve this information with an uncertainty of 

1 mm. 

Nowadays different space geodetic techniques 

are available, as example these are: 

 VLBI (Very Long Baseline Interferometry) 

 GNSS (Global Navigation Satellite Systems) 

 SLR (Satellite Laser Ranging) 

 DORIS (Doppler Satellite Orbitography) 

All have advantages and deficiencies. The 

different techniques complement each other and 

the combination of all is desirable. The 

combination requires a common reference system 

and the knowledge of the relative position 

between the reference points of each contributing 

instrument, the above mentioned local tie vector. 

In a resolution (Draft, Version 2014-01-22) the 

participants of the IERS Workshop on Local 

Surveying and Co-Locations requested a unique 

lithospheric reference points whose validity as 

such is established through pillar networks or the 

like. The local tie vector then is defined as the 

vector between the reference points of the space 

techniques and the lithospheric reference point.  

As common reference frame the International 

Terrestrial Reference Frame (ITRF) coordinate 

system is chosen. The International GPS Service 

(IGS) is a global system of satellite tracking 

stations, which helps to improve and extend the 

ITRF. The IGS Reference Frame is a realisation of 

the ITRF. With the IGS generated precise satellite 

ephemerides processed GNSS baselines refer to 

the ITRF too (Rebischung, et al., 2012). 

The coordinates of the points in a network 

realize one possible solution. To determine the 

local tie vector only the orientation of the network 

is important not the absolute position of the 

reference points because only the coordinate 

differences are required for the local tie vector.  

A lot a problems exist, dealing with the 

definition and the realisation of a local tie vector. 

Just to give an idea, some of these problems are 

mentioned here: 

- Centre of antennas are influenced by 

gravitational, temperature (Nothnagel 2009) 

and wind effects. E.g. tilting of the antenna 

implies mechanical loading on the structure. 

- Reference points can’t be measured directly, 

as e.g. for VLBI the reference point is defined 

as the intersection of the two axes. 

- Terrestrial measurements do not refer directly 

to ITRF, but to the local gravity field. 

- Attaching GNSS antennas e.g. to a large 

VLBI antenna (Ning et al., 2014) will cause 

near field effects to the GNSS observations, 

which vary during the operation of the VLBI 

system. 

4.2 Test site “Metsähovi” 

The Metsähovi Fundamental Station is a key 

infrastructure of the Finnish Geospatial research 

Institut (FGI). Metsähovi is the basic station for 

the national FIN2000 reference system, and a part 

of the national permanent GNSS network 

FinnRef. Metsähovi is a stable part of global 

network of geodetic core stations which are used 

in maintaining global terrestrial and celestial 

reference frames, for computation of satellite 

orbits, and for several geophysical studies 

(www.fgi.fi/fgi/node/517, last access: 

11.02.2015). 

As depicted in Figure 6, the structure of this 

fundamental station is rather complex, the VLBI 

antenna is located inside a radome. This results in 

a two-step network, where the connection between 

the outside network and the inside network is the 

most critical part, but this will not be discussed 

here in detail.  

The local tie network consists of 31 points, the 

local tie vector is defined between the GPS points 

11 and 31 and the point 180 in the radome. This is 

not the reference point of the VLBI antenna, but is 

located in the neighbourhood. In a 3D so-called 

free adjustment the following measurements are 

http://www.fgi.fi/


 

used: 149 total station measurements, 48 GNSS 

baselines and levelled 43 height differences.  

4.3 Derivation of Input Variables 
According to GUM Analysis 

To get a realistic idea on achievable uncertainty 

of the local tie vector a computational model with 

combined GNSS/terrestrial measurements, as is 

realised for Metsähovi, is simulated according to 

the ahead given GUM analysis with subsequent 

Monte Carlo method.  

The GNSS uncertainty model is hardly to 

simulate because the influence of multipath and 

near field effects are widely unknown, but these 

are important influence factors for the uncertainty 

assessment. As mentioned before, colleagues from 

FGI are working on this problem. 

In this first approach, the classical terrestrial 

local tie network is simulated. Each simulation 

consists of 1000 runs of the adjustment. In each 

run a new set of observations and subsequently of 

station coordinates are generated. A forced 

centring is assumed so the coordinates may differ 

only in each simulation according to the pillar 

centring variations.  

The local tie vector is defined as coordinate 

differences between the GPS points 11 and 31 and 

the point 180 in the radome, as mentioned before. 

The uncertainty of this local tie vector can be 

calculated in each simulation run from the 

covariance matrix of the adjusted stations.  

The following influence factors were 

considered with their corresponding variability 

estimates according to the GUM concept: 

Type A: Classical approach, Standard 

deviations 

 

1. Total station observations 

Standard deviation of modern total station (for 

example Leica TS30) is 0.15 mgon for manual 

angle measurements and 0.3 mgon for 

measurements with automatic target recognition. 

With two sets of angles, a precision of 0.2 mgon is 

assumed. 

- Standard deviation of directions; normal 

distribution; σ = 0.2 mgon 

- Standard deviation of zenithal angles; normal 

distribution, σ = 0.2 mgon 

- Standard deviation of slope distances; normal 

distribution, σ = 0.6 mm + 1 ppm 

2. GNSS Baselines 

Here just a rough estimate is used without 

considering correlations between baseline 

components 

- Standard deviation of each coordinate 

component: normal distribution, σ = 3.0 mm 

3. Height differences 

- Standard deviation of height differences: 

normal distribution, σ = 2.0 mm/√𝑘𝑚  

Type B: Systematic effects, ext. influences, etc.  

 

1. Pillar and centring variations 

- Uniform distribution, range: 0 - 0.1 mm  

2. Instrument and target height 

- Uniform distribution, range: 0 - 0.1 mm  

3. Total station instrument calibration 

Schwarz (Schwarz, 2012) describes the 

possible standard deviations of calibration 

parameters for total stations: 

- Addition constant: normal distribution, 

σ = 0.2 mm for combination instrument and 

prism 

- Scale unknown: normal distribution, σ = 0.8 

ppm 

Figure 6 Metsähovi fundamental station, Finland, 

with local tie network 



 

The value for the scale is bases on the problem 

to determine the temperature along the 

propagation path of the laser, see atmospheric 

parameter, too. 

 

4. GNSS Antenna calibration 

- Not implemented yet because antenna 

calibration depends on knowledge of satellite 

positions (elevation/azimuth), so it is time 

depended (Campbell, Görres, Siemes, 

Wirsch, & M., 2004).  

5. Atmospheric Parameters 

- Temperature: uniform distribution, range 0- 

0.8 K; (remark: 1 K ≈ 1 ppm) 

- Air pressure: uniform distribution, range 0 - 

0.5 mbar; (remark: 1 mbar ≈ 0.3 ppm) 

- Humidity: uniform distribution, range 0 - 5 % 

5. Results 

Applying the here proposed concept to the 

network Metsähovi gave the following results: 

In Figure 7 the observation scheme of the 

complete network and the radome network are 

depicted, containing of the point connections and 

the 95%-confidence ellipses, derived out of the 

MC simulation with 1000 runs. 

In Figure 8 and 9 the point clouds for the local 

tie vector between the stations 11 and 180 resp. 31 

and 180 are given. As this is a 3D-geodetic 

network, the point clouds are presented in the x-y 

plane and x-z plane.  

The semi major axis of the local tie vector is: 

 about 0.7 mm between points 11 and 180 

 about 0.5 mm between points 31 and 180 

Figure 7 Complete local tie network Metsähovi with 

error ellipses for all stations and the local tie 

vectors 

Figure 8 Local tie vector between points 11 and 

180. The elliptical contours refer to a confidence 

level of 95%. The semi major axis is about 1.6 mm 

(x-y plane) and 2 mm (x-z plane) 



 

These values correspond to the so-called error 

ellipses, i.e. to a confidence level of about 68 % 

and can be interpreted to be comparable to 

standard deviations. Compared to the required 

uncertainty of 1 mm for local tie vectors, as pre-

set by international scientific organisations, this 

achievement is reached by the existing network. 

The question is open, whether or not this static 

information on the local tie vector is valid for the 

usually applied instantaneous observations, i.e. 

whether this difference vector covers the 

variability of the instrument itself to a sufficient 

level.  

The local tie vector was determined between 

the GPS Reference points 11/31 and the points 

inside the radome 180. The coordinate differences 

refer to the global Cartesian coordinate system. 

6. Conclusion 

In this report first ideas are presented towards 

an advanced quality assessment for geodetic 

networks by combining the uncertainty analysis 

according to GUM with the potential of MC 

simulations. Starting point is a detailed 

uncertainty analysis of all influencing factors for 

the pre-processing chain. In accordance to this the 

MC simulation starts with this preliminary data 

and includes the subsequent adjustment 

computations, as well.  

This method is applied to a classical network 

for determination the local tie vector of the 

fundamental station Metsähovi, Finland. Here 

terrestrial measurements and GNSS observations 

are taken. The complete processing chain is 

outlined and the numerical results depict the fully 

sufficient results: It can be shown that the local tie 

vector can be determined with an uncertainty of 2 

mm based on a confidence level of 95%.  

"This project is performed within the joint 

research project SIB60 “Surveying” of the 

European Metrology Research Programme 

(EMRP). The EMRP is jointly funded by the 

EMRP participating countries within EURAMET 

and the European Union." 
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