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SUMMARY
In applications like extracting hiking trials from crowd sourced data, collecting trajectories 
describing animal movement or precise mapping of road lines, there are multiple trajectories, 
obtained from e.g. Global Navigation Satellite Systems (GNSS), that describe the same physical 
path. Due to e.g. observation techniques, occasional observational blunders and difficulty in 
identifying exactly the same physical path, individual trajectories will normally differ from one 
another. This paper proposes a method on how to estimate a best fit trajectory based on available 
individual trajectories. The precision of the estimated trajectory is quantified in form of standard 
deviations. Occasional observational blunders and failure in following the same physical path 
are addressed through statistical testing. A priori stochastic information regarding the individual 
trajectories is utilized in a weighting scheme. The proposed method is first verified using a 
simulated dataset. Results from processing of a relatively complex dataset stemming from 
individual runs with a GPS multi-sport watch, point out some advantages and drawbacks of the 
method. The method appears to handle well both observational blunders and changing 
requirements regarding following the very same physical path during data collection. Detection 
and subsequent deletion of erroneous observations might however introduce small jumps along 
the estimated trajectory. Depending on the applications, the effect of occasional small jumps 
can be handled by post smoothing.
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1. INTRODUCTION 
GNSS (Global Navigation Satellite Systems) like GPS (Global Positioning System) is 
frequently used in kinematic mode to obtain trajectories in the form of temporally ordered 
sequences of geographic coordinates. Depending on factors like hardware, software,
observation- and processing techniques, satellite geometry and observational errors from e.g. 
atmosphere and multipath (e.g. Teunissen & Montenbruck, 2017) positional accuracies ranging 
from centimeter to several tens of meters can be achieved. 
Precise georeferencing of centerlines of roads is an example where a high accuracy is required 
while an accuracy of a few meters is sufficient for e.g. hiking trials. 
Most users require that quality numbers should accompany the coordinates, e.g. standard 
deviations or Dilution of Precision (DOP).  If a trajectory is measured only once, statistical 
information from the GNSS-processing can supply such quality information. As with nearly all 
measuring techniques however, observational blunders in the form of outliers will occasionally 
lead to erroneous coordinates. An approach to overcome and reduce the effect of outliers is to 
repeat the measurements leading to a redundant set of trajectories. The problem then arises on 
how to estimate an optimal trajectory based on individually measured trajectories as well as 
how to compute corresponding quality numbers. 
Each trajectory will not have identical sampling locations as common tie points are normally 
not available.  Each trajectory is obtained individually and differences regarding start and stop 
of each trajectory, epoch interval, speed and occasionally missing epochs make the estimation 
of an optimal trajectory complicated. 
Existing methods like manual methods, Mean and Median methods (Buchim et al., 2013) and 
Dynamic Time Warping (Vaughan & Gabrys, 2016) have different strengths and weaknesses 
regarding different sampling characteristics. 
The current paper proposes a method based on traditional least squares parameter estimation. 
In a first step temporarily ordered point clouds containing coordinates from each individual 
trajectory are identified. For each point cloud, network adjustments and analyses are carried out 
where outliers are identified using multiple t-testing. Final coordinates are estimated using the 
remaining healthy observed coordinates. Precision numbers are computed in the form of 
covariance matrices or standard deviations. The method could find use in extracting e.g. popular 
hiking trials from crowd sourced data, collecting trajectories describing animal movement or in 
precise mapping av road lines. 
Section 2 gives a very short review of GNSS positioning in kinematic mode highlighting 
different coordinate systems and reference frames as well as stochastic information 
accompanying the coordinates. Section 3 is on the formation of discrete point clouds while 
section 4 gives the theoretical outline of the proposed method. Section 5 presents processing 
results using trajectories from a simulated dataset and section 6 presents results from a more 
complex scenario where individual trajectories have been measured using a GNSS multi-sport 



device. Discussion and some suggestions for future work are presented in section 7 while 
section 8 contains conclusions. 

2. GNSS KINEMATIC POSITIONING   
In the GNSS device or GNSS software, raw observations in the form of distance measurements 
between the GNSS receiver antenna and antennas of GNSS satellites are used to estimate three-
dimensional receiver coordinates (x,y,z) along with nuisance parameters such as e.g. receiver 
clock biases (e.g. Teunissen & Montenbruck, 2017). Estimated receiver coordinates are Earth 
Centered Earth Fixed (ECEF) coordinates given in the reference frame defined by the 
coordinates of satellites and eventual differential reference stations. Using a handheld GPS-
receiver, satellite coordinates are normally obtained from the broadcasted navigation message 
and coordinates are then referred to WGS84.  Broadcasted navigation messages from other 
GNSS-systems such as GLONASS, Galileo and Beidou are using reference frames which are 
nearly identical to ITRF (International Terrestrial Reference Frame), which again is nearly 
identical to WGS84 (e.g. Teunissen & Montenbruck, 2017). 
For most geomatic applications, three-dimensional Cartesian xyz-coordinates in the ECEF 
coordinate system are converted to planimetric coordinates (North, East) and height (e.g. 
Hofmann-Wellenhof et al., 2008). The conversion from xyz-coordinates to North-, East-, 
height-coordinates is a two-step procedure. The first step involves conversion to latitude, 
longitude and ellipsoidal height related to a reference ellipsoid. The last step involves 
conversion from latitude and longitude to Northing and Easting in the mapping plane by 
applying an appropriate mapping projection. Ellipsoidal heights are converted to gravity based 
heights using corrections in the form of e.g. geoid heights obtained from a geoid-model.
If working with coordinates in a regional reference frame, e.g. the European ETRF89, receiver 
coordinates in the global WGS84 or ITRF should be transformed to the regional reference 
frame. The transformation involves the time difference from the epoch of observation to the 
reference epoch of the regional reference frame as well as spatial differences between the 
reference 
national mapping agencies supply transformation formulas and software to transform and to 
convert GNSS-coordinates obtained from single point GNSS positioning to the national 
reference frame. 
Along with estimated receiver coordinates, accompanying covariance-matrices are initially 
available from the GNSS processing. The initial 3x3 covariance matrices for Cartesian ECEF-
coordinate can be converted to 3x3 covariance matrices for North-, East- and height coordinates 
using the general law for error propagation (e.g. Ghilani, 2017).  
It should be pointed out that some GNSS devices and software output full three-dimensional 
covariance information, some output standard deviations only (ignoring correlations between 
estimated coordinates) and some do not output any quality measures at all. 
When working with trajectories, the height coordinates are normally ignored as only horizontal 
coordinates are of interest. Covariance matrices accompanying North- and East coordinates are 
then reduced to 2x2-matrices.   
 
 
 



3. IDENTIFICATION OF DISCRETE POINTS CLOUDS ALONG THE 
TRAJECTORY 

The proposed method is based on the fact that all points along a trajectory have corresponding 
neighbor points in accompanying trajectories. Our criteria for selecting corresponding 
neighbors for a point in one trajectory is based on the minimum Euclidean distance to points in 
the other individual trajectories. Typical sampling interval of a GNSS-device is 1 second.  The 
spatial distance between adjacent points along a trajectory then depends on speed, typically 1.4 
m/s for a pedestrian (Levin & Norenzayan, 1999) and 13.9 m/s for a car travelling at a speed of 
50 km/h. To minimize the effect of sampling rate on the choice of nearest neighbor, the spatial 
density of points along each trajectory can be increased by e.g. linear interpolation. For 
trajectories sampled by a handheld GNSS device with a horizontal accuracy of 5 m (one sigma), 
a spatial distance of e.g. 0.05 m between points along the trajectory will minimize the effect of 
sampling rate on choice of neighbor points. 
Following a densification of each individual trajectory, one trajectory is selected as reference 
trajectory and for each point, a search is carried out to find nearest neighbors in accompanying 
trajectories. 
Denoting the number of individual trajectories m and the spatial distance between points along 
each trajectory d_dist, the clustering algorithm will output a series of point clouds along the 
trajectory. Each point cloud consists of m points and the distances between point clouds are
approximately d_dist. 
The clustering process might be sensitive to the choice of initial reference trajectory. The search 
for nearest neighbors can therefore be iterated where e.g. weighted mean coordinates of each 
point cloud are used as reference in a re-search for the m closest neighbors. Subsequent re-
clustered point clouds are then used to estimate and validate outliers and to estimate coordinates 
along the final trajectory. 
 

4. ESTIMATION AND VALIDATION 
4.1 Estimation of coordinates and standard deviations 

The suggested approach is based on least squares parameter estimation (e.g. Ghilani, 2017).  
Independent estimation and analysis processes are carried out for each point cloud along the 
trajectory. The number of point clouds is denoted n and the number of points in each point 

 Unknown 
parameters for each point cloud are horizontal coordinates Ni and Ei. The coordinates of each 
point in the point cloud, Ni

j and Ei
j are treated as observations and the number of observations

in one point cloud is thus 2m. The observations are assigned weights using 2x2 covariance 
i
j, accompanying each tuple of observed North- and East coordinates. In the 

functional model, we express the observations as a function of the unknown parameters.
 

            (1)
 
, where vector  contains the observations in each point cloud,  is vector with residuals, is 
design matrix and  is vector with unknown parameters. 
 
Applied to our case, we get 



   v            (2)

 
Due to lack of information, we ignore temporal correlations between subsequent coordinate 
pairs in the stochastic model. If 2x2 covariance matrices,  , for each pair of individual 
coordinates are available from the GNSS processing, weight matrices for each pair of 
observations are given by 

           (3)
  
The full weight matrix, , is then a block diagonal matrix with epoch wise 2x2 matrices wi

j

along the diagonal. 
 

          (4)

 
The degrees of freedom, being the number of redundant observations, is for each 
point cloud. 
 
Applying the principle of least squares gives us the estimated parameters as 

          (5)
 
The vector with residuals is computed as  

           (6)
 
The standard deviation of unit weight is then 

           (7)

 
And standard deviations of estimated parameters can be computed as 

           (8)

           (9)
 
Where  and  are respective diagonal elements in the cofactor matrix  
           (10)



 
The covariance matrix of estimated coordinates is given by 

           (11)
 
As a measure of goodness of fit, the estimated standard deviation of unit weight,  , can be 
tested against the a priori value,  , using the standard Chi-square test. Normally is 
used as a priori value. 

           (12)

 
If the computed   is greater than the tabulated value with  degrees of freedom and 

- and 
estimated standard deviation of unit weight. 
 

4.2 Extending the model to include outliers 
Several methods have been developed in an effort to reduce the influence of observational 
blunders. Traditional approaches for geodetic measurements are based on attempts to detect, 
identify and remove outliers (e.g. Baarda, 1968; Pope, 1976) or robust estimation designs to 
mitigate the influence of outliers on the parameter estimates (e.g. Huber, 1981).  
In this work, a relatively simple approach based on multiple t-testing is presented (Pelzer, 1985; 
Asplan Viak, 1994). For each single observation in the point cloud, we estimate an outlier as 
one additional unknown parameter in the model described above.  
The vector with observations, ,  as well as the weight matrix, , remain as above while the 
design matrix  is extended with a new column to accommodate the new outlier parameter.  
 
The vector with unknowns is now 

           (13)

 
Where  is the estimated outlier for observation number j in the point cloud. 
  
For the first observation (j=1),  is  

          (14)

 
Estimated parameters, residuals and standard deviations are computed as given by eq.5 - eq.7. 
Standard deviation for the estimated outlier is computed with 



(15)

 
Where  is the third diagonal elements in the cofactor matrix  (eq. 10). 
For each observation, the number 1 in third column of design matrix  is in a sequential manner 

carried out for each observation (j), where estimated outliers  with corresponding standard 
deviations,  , are used to compute t-values 

           (16)

 
The t-values are T-distributed with  degrees of freedom. As the estimated outlier 
can have both positive and negative signs, this is a two-sided t-test. Furthermore, when testing 

has to be adjusted due to multiple testing. Assuming independent observations, the significance 
level of each individual test, j, can be computed by 

         (17)
 
If the number of observations to be tested is large (e.g. ), a value of is 
frequently used. 
The outlier estimation and testing approach is a nested iterative process. First the most extreme 
outlier is identified as being the  associated with the largest computed . This  is then 
checked against the tabulated T-value using  degrees of freedom and significance level of  

. If the most extreme outlier is significantly different to zero, the associated observed point 
-2) 

observations (e.g. Ghilani, 2017). 
The whole procedure is repeated until the most extreme outlier value is not significantly 
different to zero. Final estimates and standard deviations for coordinates are estimated using 
the remaining observations. 
Only the outlier parameter  and associated standard deviation  are required in the search 

for outliers. To speed up the computations in an operational software, the somewhat naive 
approach of estimating the full set of unknowns and standard deviations for every observation 
to be tested can be replaced by an approach based on Cholesky decomposition and back solution 
of an extended system of equations (e.g. Asplan Viak, 1994 ; Leick et al., 2015). 

5. SIMULATED TRAJECTORIES 
In this section the proposed method is used to estimate a trajectory based on a simulated dataset. 

-segments connecting 11 control points, see 
figure 1. Distances between adjacent control points are approximately 7 meters. Four simulated 
trajectories are now computed. 
 



 
Figure 1. True trajectory. Approximate distances between adjacent points are 7 meters. 
 
Around each of the 11 control points, coordinates of four randomized points are generated using 

- (Matlab Release 2018a, 2018). -
returns normally distributed random numbers. A standard deviation of 1 m is used in the 
generation of each randomized coordinate, North and East respectively. Line-segments 
connecting individual points in each cluster finalize the four simulated trajectories, see figure 
2.  

 
Figure 2. Four simulated trajectories shown together with the true trajectory. 
 
We now attempt to reconstruct the reference trajectory from the four simulated trajectories. 
Along each simulated trajectory, densified trajectories are generated using linear interpolation. 
Intermediate distances along the four resampled trajectories are 0.05 m. As described in section 
3, the minimum Euclidian distance principle is now used to identify a total of 2213 discrete 
point clouds along the resampled trajectories. The estimation and validation scheme described 
in section 4 is used to estimate a best fit trajectory based on the four simulated trajectories. 
Figure 3 shows the original reference trajectory along with the estimated trajectory from a 
program run where the outlier detection algorithm has not been applied. As seen from figure 3 



along with figure 2, the estimated trajectory fits the reference trajectory better than each of the 
individual trajectories. 

 
Figure 3. Trajectory estimated without application of outlier detection, shown together with true trajectory. 
 
Figure 4 shows the estimated trajectory stemming from a program run were also the outlier 

-pairs (2.9 %) 
were detected as outliers and omitted in the estimation of the final estimated coordinates that 
constitute the trajectory. It can be observed that the occasional detection of outliers along the 
estimated trajectory results in small jumps.  

 
Figure 4. Trajectory estimated with application of outlier detection, shown together with true trajectory. 
Occasional small jumps can be seen along the estimated trajectory. 
 
Table 1 presents some details concerning the estimated standard deviations for estimated 
coordinates along the trajectory. 
 
Table 1. Estimated standard deviations in unit of meter from program runs with and without outlier detection. 
Maximum, minimum and mean standard deviations for 2213 pairs of coordinates. 

Type of processing Max ,   Min ,  Mean ,  
Without detection 0.653 0.042 0.303 



With detection 0.653 0.003 0.289 
 
In this simulated dataset, estimated North- and East coordinates have identical standard 
deviations. As the same random algorithm is used in the simulation of both North- and East 
coordinates, the associated estimated standard deviations have the same magnitude. As 
expected, the minimum and mean of estimated standard deviations are smallest for the program 
run with outlier detection. 
 

6. TRAJECTORIES COLLECTED WITH A GARMIN FORERUNNER 910XT 
MULTI SPORT DEVICE. 

A Garmin Forerunner 910XT Multi Sport device is used to log positions while running a loop 
of approximately 4.7 kilometer, see figure 5. The device operated in the default data recording 
mode of smart recording (Garmin, 2014). In smart recording mode, positions are recorded based 
on a proprietary algorithm for change in direction, speed or hearth rate. The data files are then 
smaller compared to the alternative setting of recording positions every 1 second. Inspecting 
the resulting data files, reveals that the recording interval vary between 1 second and ca. 10 
seconds. With an average pace of approximately 6 minutes per kilometer, there is a recorded 
position approximately every 2.8  28 meter. The majority of the recordings are sampled 
approximately every 2-3 seconds / 5.6-8.4 meter respectively. 

 
Figure 5. Plot of eight individual trajectories. Locations mentioned in the description of artifacts a, b, c and d 
are shown with white capital letters. 
 



A total of eight runs started and ended at approximately the same location A, see figure 5. The 
eight trajectories are run clockwise and distributed in time over a period of more than one 
year, see table 2. 
Table 2. Date, number of logged positions, number of densified positions and distance for eight different 
trajectories. 

Date (dd.mm.yyyy) 
# logged positions  # densified 

positions 
Distance (meter)

17.06.2017 428 95744 4787 
30.07.2017 
06.08.2017 
05.09.2017 
08.09.2017 
26.12.2017 
14.06.2018 
25.07.2018 

400 
391 
439 
455 
461 
469 
464 

94354 
92845 
97674 
96256 
95401 
93590 
93944 

4717 
4642 
4884 
4813 
4770 
4679 
4697 

Some artifacts can be seen from figure 5 and are due to: 
a. It is a well-known issue with the Garmin Forerunner 910XT device that the first 

recorded positions occasionally have errors of several tens of meters. The possibility of 
erroneous first positions is higher if the device has not been used for a while. 

b. From the starting point A to approximately point B, the runner chose three different 
paths. Four of the runs started off in a south-west direction, following the road. Two of 
the runs first followed the road in a northern direction from the starting point A before 
turning in a western direction following a foot-path through the forest. Finally two of 
the runs selected a foot-path that goes between the other two initial choices. 

c. From approximately point B to approximately point C, the runs chose slightly different 
paths. Some runs followed the road while the others followed a footpath. The footpath 
runs approximately 10-30 meters to the right of the road. This is in an area with tall 
threes and thick foliage. 

d. In the end of the loop from point D, returning to the approximate start- and end-point 
A, seven of the runs followed the same path. One run did however choose a complete 
different road to the north of the other runs. 

 
In the data processing, the artifacts concerning some of the individual trajectories are not taken 
into concern, and the proposed method is used to estimate coordinates for a best fit trajectory 
along with quality data in the form of estimated standard deviations (eq. 5 and eq. 8-9).
The recorded data are downloaded from the device and converted to files with coordinates in 
the ETRF89 reference frame using the UTM map projection in zone 32. The Garmin Forerunner 
910XT device does not provide any quality measures of logged positions. Assuming equal 
accuracy for independent North- and East coordinates and an horizontal accuracy of 
approximately 5 meters  (e.g. van Diggelen & Enge, 2015), a priori standard deviations 
and  are both assigned a value of 3.5 meter. To take into account that different runs 
occasionally follow slightly different paths, e.g. left side of a road on some runs and right side 
of the same road on other runs, the standard deviation designated each observed coordinate is 
augmented with a term that takes offsets between physical paths into account. Assuming that 
errors are random and that GNSS errors are independent from track-offset errors, a priori 



standard deviations for track-offsets,  and are used in the propagation of a 
priori final variances: 

     (18)
 
Where  and  are a priori variances for North- and East coordinates respectively and 
subsequently used in the weighting scheme by populating the 2x2 covariance matrices, , in 
eq. 3. In the present estimation and analysis,  and  are both assigned values of 2 
meters. 
Each trajectory is first resampled to a distance of 0.05 m between adjacent points. The minimum 
Euclidian distance principle as described in section 3 is then used to identify a total of 94 354 
discrete point clouds along the trajectory before the estimation and validation scheme suggested 
in section 4 is used to estimate the final trajectory. 
A program run without the outlier detection algorithm averages out the effects of the artifacts 
mentioned above and estimated coordinates and trajectory from this approach is not shown 
here. In figure 6, the background orthophoto is removed and shows the estimated coordinates 
from a program run were the outlier detection algorithm is applied. A first glance at figure 6 
reveals two interesting observations: 

 In the beginning of the loop, from the starting point A to approximately point B, there 
is only small segments of estimated coordinates as the outlier detection has rejected 
most of the observed coordinates. Estimated coordinates for the small segments in this 
first part have associated standard deviations of several tens of meters. 

 In the end of the loop, from point D to the start- and end-point A, the estimated trajectory 
follows the main path defined by seven of the runs. The deviated path of the one single 
run is rejected by the outlier detection approach. 



 
Figure 6. Plot of estimated trajectory from a program run with outlier detection algorithm applied. The estimated 
trajectory is shown as a thin black line together with the eighth individually observed trajectories. Compared with 
figure 5 the background orthophoto is removed in order to better see poorly estimated segments. Locations 
mentioned in the description of artifacts a, b, c and d are shown with capital letters. 
 
The combined effect of artifacts a, b and c, mentioned above, is that one common trajectory is 
not justified for the start segment from point A to point B and further on to point C. As seen in 
figure 6, the proposed estimation and validation scheme has nevertheless produced short 
segments of a trajectory in this first part. The reason why not all observations have been rejected 

-test, but estimated 
coordinates are associated with very high standard deviations. In the final step, a filter based on 
the outcome from the test of estimated standard deviation of unit weight (eq. 12) is therefore 
used to reject poorly estimated coordinates. 
Figure 7 shows the final accepted trajectory with a thin line. Segments filtered out by the Chi-
square test are marked with thicker black dots. 



 
Figure 7. Plot of estimated trajectory from a program run with outlier detection algorithm applied. Accepted 
trajectory with a thin line and segments rejected in the Chi-square test with thicker black dots. Locations 
mentioned in the description of artifacts a, b, c and d are shown with capital letters. 
 
Concerning artifact d, the outlier detection algorithm effectively detected that the path selected 
by one run significantly diverges from the path selected by all the other runs. 
Table 3 gives maximum, minimum and mean standard deviations for estimated coordinates for 
accepted and rejected coordinates respectively. In the stochastic model, we have for the current 
dataset assumed that observed North- and East coordinates are independent of one another. 
Since there is no common information between estimated North- and East coordinates in the 
functional model, all standard deviations are then equal for estimated North- and East 
coordinates.  
Table 3. Estimated standard deviations in unit of meter for accepted and rejected coordinates, North- and East-
coordinates respectively. Maximum, minimum and mean standard deviation. 

Solution Max ,   Min ,  Mean ,  
Accepted coordinates   2.07 0.13   0.77 
Rejected coordinates 21.33 2.07 21.33 

 
Figure 8 shows cumulative distribution plots of standard deviations for accepted and for 
rejected coordinates. For the accepted coordinates, the largest standard deviation is 
approximately 2.1 m, and 95% of standard deviation are smaller than 1.5 m. For the rejected 
coordinates, the largest standard deviation is approximately 21.3 m, and 5% of standard 
deviations are larger than 20.2 m. 



 

Figure 8. Cumulative distribution for North- or East-coordinates for accepted points left and rejected points right.
 

7. DISCUSSION AND SOME SUGGESTIONS FOR FUTURE WORK 
Detection and removal of occasional outliers introduce sudden small jumps in the estimated 
trajectory, as seen in figure 4 in the section with the simulated dataset. Depending on the actual 
application, there can be a need to smooth out such inconsistences. 
The handling of practical aspects does also deserve attention, e.g.: 

 methods and techniques on how to fill in gaps in estimated trajectories, 
 interpolation techniques when densifying the original trajectories, e.g. linear 

interpolation or splines, 
 optimization of computational speed, 
 datasets with individual trajectories where some observers choose to go left of an 

obstacle, e.g. a lake, and other choose go right, 
 datasets with very curved trajectories, 
 datasets with nested trajectories. 

 
Finally, alternative methods for dealing with outliers as well as the acceptance criteria for 

estimating the trajectory of centerlines of roads, a stricter acceptance criteria is required 
regarding choice of the same physical path than for e.g. hiking trials. This proximity 
requirement can for different applications be managed by tuning the augmentation of the a priori 
covariance matrices  for observed coordinate (eq. 18). Assigning smaller track-offset terms 
(e.g. center lines of roads) will make the goodness of fit test (eq. 12) more sensitive to diverging 
paths than larger track-offset terms (e.g. hiking trials). How to assign proper track- offset values, 

 and  , to take into account required proximity for individual physical paths 
should be further explored. 
 

8. CONCLUSIONS 
In this work, a method is proposed on how to automatically estimate one best fit trajectory from 
several individually measured trajectories. The proposed method uses a weighted least squares 
approach to take into account a priori accuracies and correlations of individual trajectories. An 
outlier detection algorithm based on multiple t-testing is used to isolate and omit bad 



observations. The outlier detection algorithm might also detect if any selected paths 
significantly deviates from other choices of paths. Remaining segments of bad observations or 
multiple choices of paths can be identified by applying a final filter based on a statistical test of 
goodness of fit. 
The final product is a trajectory consisting of a temporally sequence of coordinates. Each 
estimated coordinate has an associated quality number in the form of a standard deviation.  
Due to erroneously observed coordinates or choice of multiple diverging paths during data 
collection, there might be gaps in the final trajectory. Eventual gaps can subsequently be flagged 
and give information on that additional measures must be used to finalize the trajectory. 
The proposed method can be applied to trajectories from different sources. E.g. trajectories in 
existing databases can be combined with newly observed trajectories. The difficult task then is 
how to assign proper a priori stochastic information to the different trajectories, ideally in the 
form of full variance-covariance information. 
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